Yovilianda M. Untoro, Diaz Ayu Widyasari, Edi Supriadi, S. N. A. Jenie
{"title":"罗丹明B对地热二氧化硅制备的荧光纳米颗粒性能的影响","authors":"Yovilianda M. Untoro, Diaz Ayu Widyasari, Edi Supriadi, S. N. A. Jenie","doi":"10.21776/ub.jpacr.2020.009.03.524","DOIUrl":null,"url":null,"abstract":"Rhodamine B can be used as a fluorophore to produce a fluorescent silica nanoparticles derived from geothermal sludge. The purpose of this research is to synthesize fluorescent silica nanoparticles (FSNP) modified with rhodamine B and cetyl trimethyl ammonium bromide (CTAB) using sol-gel method. Geothermal waste was used as a precursor and added with NaOH at 90 0 C to generate sodium silicate. Rhodamine B, as the fluorescent dye were added with concentration variations ranging from 0.156 mg/g to 10 mg/g.CTAB was used as template and HCl 2N was applied as gelling catalyst with aging time of 18 hours. Characterization of FSNP was measured using spectrofluorometer to identify the fluorescent intensity, fourier transform infrared (FT-IR) to determine the functional group of FSNP, BraunerEmmett-Teller (BET) adsorption to calculate the specific area of the particles, X-ray diffraction (XRD) to analyze the crystallographic phases, and transmission electron microscopy (TEM) to analyze the surface morphology of the FSNP. FT-IR and fluorescent intensity results showed that FSNP with 2.5 mg/g of rhodamine B had the optimum characteristics. The FSNP was in amorphous phase with uniform pore distribution. BET analysis showed that the specific surface of the FSNP was 190.22 m 2 /g.","PeriodicalId":22728,"journal":{"name":"The Journal of Pure and Applied Chemistry Research","volume":"122 1","pages":"170-175"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Effect of Rhodamine B on The Properties of Fluorescent Nanoparticles Derived from Geothermal Silica\",\"authors\":\"Yovilianda M. Untoro, Diaz Ayu Widyasari, Edi Supriadi, S. N. A. Jenie\",\"doi\":\"10.21776/ub.jpacr.2020.009.03.524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rhodamine B can be used as a fluorophore to produce a fluorescent silica nanoparticles derived from geothermal sludge. The purpose of this research is to synthesize fluorescent silica nanoparticles (FSNP) modified with rhodamine B and cetyl trimethyl ammonium bromide (CTAB) using sol-gel method. Geothermal waste was used as a precursor and added with NaOH at 90 0 C to generate sodium silicate. Rhodamine B, as the fluorescent dye were added with concentration variations ranging from 0.156 mg/g to 10 mg/g.CTAB was used as template and HCl 2N was applied as gelling catalyst with aging time of 18 hours. Characterization of FSNP was measured using spectrofluorometer to identify the fluorescent intensity, fourier transform infrared (FT-IR) to determine the functional group of FSNP, BraunerEmmett-Teller (BET) adsorption to calculate the specific area of the particles, X-ray diffraction (XRD) to analyze the crystallographic phases, and transmission electron microscopy (TEM) to analyze the surface morphology of the FSNP. FT-IR and fluorescent intensity results showed that FSNP with 2.5 mg/g of rhodamine B had the optimum characteristics. The FSNP was in amorphous phase with uniform pore distribution. BET analysis showed that the specific surface of the FSNP was 190.22 m 2 /g.\",\"PeriodicalId\":22728,\"journal\":{\"name\":\"The Journal of Pure and Applied Chemistry Research\",\"volume\":\"122 1\",\"pages\":\"170-175\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Pure and Applied Chemistry Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21776/ub.jpacr.2020.009.03.524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Pure and Applied Chemistry Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21776/ub.jpacr.2020.009.03.524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Effect of Rhodamine B on The Properties of Fluorescent Nanoparticles Derived from Geothermal Silica
Rhodamine B can be used as a fluorophore to produce a fluorescent silica nanoparticles derived from geothermal sludge. The purpose of this research is to synthesize fluorescent silica nanoparticles (FSNP) modified with rhodamine B and cetyl trimethyl ammonium bromide (CTAB) using sol-gel method. Geothermal waste was used as a precursor and added with NaOH at 90 0 C to generate sodium silicate. Rhodamine B, as the fluorescent dye were added with concentration variations ranging from 0.156 mg/g to 10 mg/g.CTAB was used as template and HCl 2N was applied as gelling catalyst with aging time of 18 hours. Characterization of FSNP was measured using spectrofluorometer to identify the fluorescent intensity, fourier transform infrared (FT-IR) to determine the functional group of FSNP, BraunerEmmett-Teller (BET) adsorption to calculate the specific area of the particles, X-ray diffraction (XRD) to analyze the crystallographic phases, and transmission electron microscopy (TEM) to analyze the surface morphology of the FSNP. FT-IR and fluorescent intensity results showed that FSNP with 2.5 mg/g of rhodamine B had the optimum characteristics. The FSNP was in amorphous phase with uniform pore distribution. BET analysis showed that the specific surface of the FSNP was 190.22 m 2 /g.