5个模型参数对负载MEA水溶液CO2吸收塔性能的影响

IF 1.8 4区 工程技术 Q4 ENERGY & FUELS Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles Pub Date : 2021-01-01 DOI:10.2516/OGST/2020098
Ibtissam Hammouche, A. Selatnia, S. Yassa
{"title":"5个模型参数对负载MEA水溶液CO2吸收塔性能的影响","authors":"Ibtissam Hammouche, A. Selatnia, S. Yassa","doi":"10.2516/OGST/2020098","DOIUrl":null,"url":null,"abstract":"Rigorous packed-bed absorber modeling and simulation are significant for post-combustion CO2 capture processes design. Hence, a good knowledge and judicious selection of model parameters are essential to ensure reliable predictions. In this paper, the reactive absorption of CO2 into loaded aqueous monoethanolamine solution was modeled, furthermore, the effects of five different parameters (kinetic model, enhancement factor, enthalpy of absorption, CO2 diffusivity, and vapor pressure) were investigated. Finally, this study revealed that some model parameters have a large influence on the column performance, contrary to others. In addition, methods and correlations that generally provide more accurate predictions of the empirical data relative to the other cases involved in this research were determined for each model parameter. It was also found that the model deviation was reduced by 18% and 4% for the liquid temperature and liquids CO2 loading profiles, respectively, while comparing between the worst and the best case.","PeriodicalId":19424,"journal":{"name":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","volume":"488 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of five model parameters on the performance of a CO2 absorber column by a loaded aqueous MEA solution\",\"authors\":\"Ibtissam Hammouche, A. Selatnia, S. Yassa\",\"doi\":\"10.2516/OGST/2020098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rigorous packed-bed absorber modeling and simulation are significant for post-combustion CO2 capture processes design. Hence, a good knowledge and judicious selection of model parameters are essential to ensure reliable predictions. In this paper, the reactive absorption of CO2 into loaded aqueous monoethanolamine solution was modeled, furthermore, the effects of five different parameters (kinetic model, enhancement factor, enthalpy of absorption, CO2 diffusivity, and vapor pressure) were investigated. Finally, this study revealed that some model parameters have a large influence on the column performance, contrary to others. In addition, methods and correlations that generally provide more accurate predictions of the empirical data relative to the other cases involved in this research were determined for each model parameter. It was also found that the model deviation was reduced by 18% and 4% for the liquid temperature and liquids CO2 loading profiles, respectively, while comparing between the worst and the best case.\",\"PeriodicalId\":19424,\"journal\":{\"name\":\"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles\",\"volume\":\"488 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2516/OGST/2020098\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2516/OGST/2020098","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

严格的填充床吸收器建模和仿真对燃烧后CO2捕集工艺设计具有重要意义。因此,良好的知识和明智的选择模型参数是必不可少的,以确保可靠的预测。本文建立了负载型单乙醇胺水溶液中CO2的反应吸收模型,考察了5个不同参数(动力学模型、增强因子、吸收焓、CO2扩散系数和蒸汽压)对反应吸收的影响。最后,本研究揭示了一些模型参数对柱性能的影响较大,而另一些模型参数则相反。此外,对于每个模型参数,确定了相对于本研究中涉及的其他案例,通常提供更准确的经验数据预测的方法和相关性。在比较最坏和最佳情况时,还发现液体温度和液体CO2加载曲线的模型偏差分别减少了18%和4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of five model parameters on the performance of a CO2 absorber column by a loaded aqueous MEA solution
Rigorous packed-bed absorber modeling and simulation are significant for post-combustion CO2 capture processes design. Hence, a good knowledge and judicious selection of model parameters are essential to ensure reliable predictions. In this paper, the reactive absorption of CO2 into loaded aqueous monoethanolamine solution was modeled, furthermore, the effects of five different parameters (kinetic model, enhancement factor, enthalpy of absorption, CO2 diffusivity, and vapor pressure) were investigated. Finally, this study revealed that some model parameters have a large influence on the column performance, contrary to others. In addition, methods and correlations that generally provide more accurate predictions of the empirical data relative to the other cases involved in this research were determined for each model parameter. It was also found that the model deviation was reduced by 18% and 4% for the liquid temperature and liquids CO2 loading profiles, respectively, while comparing between the worst and the best case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: OGST - Revue d''IFP Energies nouvelles is a journal concerning all disciplines and fields relevant to exploration, production, refining, petrochemicals, and the use and economics of petroleum, natural gas, and other sources of energy, in particular alternative energies with in view of the energy transition. OGST - Revue d''IFP Energies nouvelles has an Editorial Committee made up of 15 leading European personalities from universities and from industry, and is indexed in the major international bibliographical databases. The journal publishes review articles, in English or in French, and topical issues, giving an overview of the contributions of complementary disciplines in tackling contemporary problems. Each article includes a detailed abstract in English. However, a French translation of the summaries can be provided to readers on request. Summaries of all papers published in the revue from 1974 can be consulted on this site. Over 1 000 papers that have been published since 1997 are freely available in full text form (as pdf files). Currently, over 10 000 downloads are recorded per month. Researchers in the above fields are invited to submit an article. Rigorous selection of the articles is ensured by a review process that involves IFPEN and external experts as well as the members of the editorial committee. It is preferable to submit the articles in English, either as independent papers or in association with one of the upcoming topical issues.
期刊最新文献
Preliminary analyses of synthetic carbonate plugs: consolidation, petrophysical and wettability properties Analysis of well testing results for single phase flow in reservoirs with percolation structure Digital twin based reference architecture for petrochemical monitoring and fault diagnosis Identification of reservoir fractures on FMI image logs using Canny and Sobel edge detection algorithms Ensemble-based method with combined fractional flow model for waterflooding optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1