一种新的语音建模方法:SYMPES

Ümit Güz, Hakan Gürkan, B. Yarman
{"title":"一种新的语音建模方法:SYMPES","authors":"Ümit Güz, Hakan Gürkan, B. Yarman","doi":"10.1109/ISCAS.2006.1692971","DOIUrl":null,"url":null,"abstract":"In this paper, the method of speech modeling which is called SYMPES is introduced and it is compared with the commercially available methods. It is shown that for the same compression ratio or better, SYMPES yields considerably better hearing quality over the coders such as G.726 at 16 Kbps and voice excited LPC-10E of 2.4Kbps.","PeriodicalId":91083,"journal":{"name":"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A new speech modeling method: SYMPES\",\"authors\":\"Ümit Güz, Hakan Gürkan, B. Yarman\",\"doi\":\"10.1109/ISCAS.2006.1692971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the method of speech modeling which is called SYMPES is introduced and it is compared with the commercially available methods. It is shown that for the same compression ratio or better, SYMPES yields considerably better hearing quality over the coders such as G.726 at 16 Kbps and voice excited LPC-10E of 2.4Kbps.\",\"PeriodicalId\":91083,\"journal\":{\"name\":\"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2006.1692971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2006.1692971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了一种名为SYMPES的语音建模方法,并将其与市面上已有的语音建模方法进行了比较。结果表明,在相同或更高的压缩比下,SYMPES比G.726 (16 Kbps)和语音激励LPC-10E (2.4Kbps)等编码器产生明显更好的听力质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new speech modeling method: SYMPES
In this paper, the method of speech modeling which is called SYMPES is introduced and it is compared with the commercially available methods. It is shown that for the same compression ratio or better, SYMPES yields considerably better hearing quality over the coders such as G.726 at 16 Kbps and voice excited LPC-10E of 2.4Kbps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
期刊最新文献
Design of Compensator for Modified Multistage CIC-Based Decimation Filter with Improved Characteristics Using the Miller Theorem to Analyze Two-Stage Miller-Compensated Opamps Analog processing by digital gates: fully synthesizable IC design for IoT interfaces A Parallel Radix-2 k FFT Processor using Single-Port Merged-Bank Memory Differential Fowler-Nordheim Tunneling Dynamical System for Attojoule Sensing and Recording.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1