R. Bennett, Angie D. Harting, C. Simpson, S. Tallury, A. Pickering, Ning Wang, J. Dunne
{"title":"野生花生品种抗蚜性温室评价述评","authors":"R. Bennett, Angie D. Harting, C. Simpson, S. Tallury, A. Pickering, Ning Wang, J. Dunne","doi":"10.3146/PS20-21.1","DOIUrl":null,"url":null,"abstract":"Athelia rolfsii (Curzi) C.C. Tu & Kimbr. is the one of the most damaging pathogens of cultivated peanut, causing the soilborne disease known regionally as white mold, stem rot, or southern blight. Because the genetic base for cultivated peanut is narrow, wild Arachis species may possess novel sources of disease resistance. We evaluated 18 accessions representing 15 Arachis species ( batizocoi , benensis , cardenasii , correntina , cruziana , diogoi , duranensis , herzogii , hoehnei , kempff - mercadoi , kuhlmannii , microsperma , monticola , simpsonii , williamsii ) in the greenhouse for resistance to At. rolfsii . Assays were conducted on intact plants propagated from rooted cuttings inoculated with mycelial plugs, and lesion length and mycelial growth were measured at 4, 6, 10, and 12 days after inoculation. For lesion length, Arachis batizocoi (PI 468326 and PI 468327), and A. kuhlmannii PI 468159 were the most susceptible entries with a mean lesion length >50 mm at 12 days after inoculation. Arachis microsperma (PI 666096 and PI 674407) and A. diogoi PI 468354 had the shortest lesions with mean lengths ≤16 mm at 12 days after inoculation. Arachis cruziana PI 476003 and the two A. batizocoi PIs had the highest mean area under the disease progress curves (AUDPCs), and the lowest AUDPC was obtained from the A. microsperma PI 674407. Mycelial growth was correlated with lesion length in most species except A. monticola PI 497260 . These results may be useful to peanut geneticists seeking additional sources of resistance to Athelia rolfsii .","PeriodicalId":19823,"journal":{"name":"Peanut Science","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Note on a Greenhouse Evaluation of Wild Arachis Species for Resistance to Athelia rolfsii\",\"authors\":\"R. Bennett, Angie D. Harting, C. Simpson, S. Tallury, A. Pickering, Ning Wang, J. Dunne\",\"doi\":\"10.3146/PS20-21.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Athelia rolfsii (Curzi) C.C. Tu & Kimbr. is the one of the most damaging pathogens of cultivated peanut, causing the soilborne disease known regionally as white mold, stem rot, or southern blight. Because the genetic base for cultivated peanut is narrow, wild Arachis species may possess novel sources of disease resistance. We evaluated 18 accessions representing 15 Arachis species ( batizocoi , benensis , cardenasii , correntina , cruziana , diogoi , duranensis , herzogii , hoehnei , kempff - mercadoi , kuhlmannii , microsperma , monticola , simpsonii , williamsii ) in the greenhouse for resistance to At. rolfsii . Assays were conducted on intact plants propagated from rooted cuttings inoculated with mycelial plugs, and lesion length and mycelial growth were measured at 4, 6, 10, and 12 days after inoculation. For lesion length, Arachis batizocoi (PI 468326 and PI 468327), and A. kuhlmannii PI 468159 were the most susceptible entries with a mean lesion length >50 mm at 12 days after inoculation. Arachis microsperma (PI 666096 and PI 674407) and A. diogoi PI 468354 had the shortest lesions with mean lengths ≤16 mm at 12 days after inoculation. Arachis cruziana PI 476003 and the two A. batizocoi PIs had the highest mean area under the disease progress curves (AUDPCs), and the lowest AUDPC was obtained from the A. microsperma PI 674407. Mycelial growth was correlated with lesion length in most species except A. monticola PI 497260 . These results may be useful to peanut geneticists seeking additional sources of resistance to Athelia rolfsii .\",\"PeriodicalId\":19823,\"journal\":{\"name\":\"Peanut Science\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Peanut Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3146/PS20-21.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peanut Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3146/PS20-21.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Note on a Greenhouse Evaluation of Wild Arachis Species for Resistance to Athelia rolfsii
Athelia rolfsii (Curzi) C.C. Tu & Kimbr. is the one of the most damaging pathogens of cultivated peanut, causing the soilborne disease known regionally as white mold, stem rot, or southern blight. Because the genetic base for cultivated peanut is narrow, wild Arachis species may possess novel sources of disease resistance. We evaluated 18 accessions representing 15 Arachis species ( batizocoi , benensis , cardenasii , correntina , cruziana , diogoi , duranensis , herzogii , hoehnei , kempff - mercadoi , kuhlmannii , microsperma , monticola , simpsonii , williamsii ) in the greenhouse for resistance to At. rolfsii . Assays were conducted on intact plants propagated from rooted cuttings inoculated with mycelial plugs, and lesion length and mycelial growth were measured at 4, 6, 10, and 12 days after inoculation. For lesion length, Arachis batizocoi (PI 468326 and PI 468327), and A. kuhlmannii PI 468159 were the most susceptible entries with a mean lesion length >50 mm at 12 days after inoculation. Arachis microsperma (PI 666096 and PI 674407) and A. diogoi PI 468354 had the shortest lesions with mean lengths ≤16 mm at 12 days after inoculation. Arachis cruziana PI 476003 and the two A. batizocoi PIs had the highest mean area under the disease progress curves (AUDPCs), and the lowest AUDPC was obtained from the A. microsperma PI 674407. Mycelial growth was correlated with lesion length in most species except A. monticola PI 497260 . These results may be useful to peanut geneticists seeking additional sources of resistance to Athelia rolfsii .