局部激光退火技术对绝缘体上硅器件的修整(会议报告)

V. Biryukova, G. Sharp, C. Klitis, Sarah Ruddell, M. Sorel
{"title":"局部激光退火技术对绝缘体上硅器件的修整(会议报告)","authors":"V. Biryukova, G. Sharp, C. Klitis, Sarah Ruddell, M. Sorel","doi":"10.1117/12.2507212","DOIUrl":null,"url":null,"abstract":"Silicon-on-Insulator devices are particularly sensitive to fabrication errors. As an example, a deviation in waveguide height or width of as little as 1nm translates directly to a 1nm offset in the transfer function of any interferometric devices (such as a ring resonator) constructed using the said waveguide. Therefore, even as fabrication tolerance continues to improve, post-fabrication treatment is often the only way of ensuring device uniformity for particularly demanding applications. This work proposes a novel approach for post fabrication trimming of SOI devices based on localised laser annealing of HSQ cladding layer. HSQ is a versatile material often used in fabrication of SOI devices as both the mask material for electron-beam lithography resist and as a cladding or planarization layer due to its similarity to conventional silica. However, unlike silica, the refractive index of HSQ can be changed significantly (up to ΔnHSQ = 3.26*10-2) by thermal processing. We utilise this property for trimming by cladding a conventional SOI waveguide optimised for TE propagation (height h=220 nm, width=500nm) with a layer of HSQ and then permanently changing the refractive index of the cladding via laser annealing. This approach allows us to select individual devices and only apply the change where necessary. As a demonstrator, we trim a resonance of a racetrack resonator by 1.3nm. The technique has proven to be robust with no parameter drift observed 7 days after trimming and no thermal cross-talk to neighbouring devices. Furthermore, unlike its predecessors, it is based on a standard fabrication process and does not require expensive specialised equipment.","PeriodicalId":21725,"journal":{"name":"Silicon Photonics XIV","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trimming of silicon-on-insulator devices via localised laser annealing (Conference Presentation)\",\"authors\":\"V. Biryukova, G. Sharp, C. Klitis, Sarah Ruddell, M. Sorel\",\"doi\":\"10.1117/12.2507212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon-on-Insulator devices are particularly sensitive to fabrication errors. As an example, a deviation in waveguide height or width of as little as 1nm translates directly to a 1nm offset in the transfer function of any interferometric devices (such as a ring resonator) constructed using the said waveguide. Therefore, even as fabrication tolerance continues to improve, post-fabrication treatment is often the only way of ensuring device uniformity for particularly demanding applications. This work proposes a novel approach for post fabrication trimming of SOI devices based on localised laser annealing of HSQ cladding layer. HSQ is a versatile material often used in fabrication of SOI devices as both the mask material for electron-beam lithography resist and as a cladding or planarization layer due to its similarity to conventional silica. However, unlike silica, the refractive index of HSQ can be changed significantly (up to ΔnHSQ = 3.26*10-2) by thermal processing. We utilise this property for trimming by cladding a conventional SOI waveguide optimised for TE propagation (height h=220 nm, width=500nm) with a layer of HSQ and then permanently changing the refractive index of the cladding via laser annealing. This approach allows us to select individual devices and only apply the change where necessary. As a demonstrator, we trim a resonance of a racetrack resonator by 1.3nm. The technique has proven to be robust with no parameter drift observed 7 days after trimming and no thermal cross-talk to neighbouring devices. Furthermore, unlike its predecessors, it is based on a standard fabrication process and does not require expensive specialised equipment.\",\"PeriodicalId\":21725,\"journal\":{\"name\":\"Silicon Photonics XIV\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Silicon Photonics XIV\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2507212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silicon Photonics XIV","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2507212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

绝缘体上硅器件对制造误差特别敏感。例如,波导高度或宽度的偏差仅为1nm,直接转化为使用上述波导构建的任何干涉装置(如环形谐振器)的传递函数中的1nm偏移。因此,即使制造公差不断提高,对于特别苛刻的应用,制造后处理通常是确保器件均匀性的唯一方法。本文提出了一种基于HSQ熔覆层局部激光退火的SOI器件加工后修整新方法。HSQ是一种用途广泛的材料,通常用于制造SOI器件,既可以作为电子束光刻抗蚀剂的掩膜材料,也可以作为包层或平面化层,因为它与传统二氧化硅相似。然而,与二氧化硅不同的是,HSQ的折射率通过热处理可以显著改变(高达ΔnHSQ = 3.26*10-2)。我们利用这一特性,用一层HSQ包覆传统的用于TE传播优化的SOI波导(高度h=220 nm,宽度=500nm),然后通过激光退火永久改变包覆层的折射率。这种方法允许我们选择单个设备,并仅在必要时应用更改。作为演示,我们将赛道谐振器的共振缩短了1.3nm。该技术已被证明是鲁棒的,在修剪后7天内没有观测到参数漂移,也没有与邻近器件的热串扰。此外,不像它的前辈,它是基于一个标准的制造过程,不需要昂贵的专业设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trimming of silicon-on-insulator devices via localised laser annealing (Conference Presentation)
Silicon-on-Insulator devices are particularly sensitive to fabrication errors. As an example, a deviation in waveguide height or width of as little as 1nm translates directly to a 1nm offset in the transfer function of any interferometric devices (such as a ring resonator) constructed using the said waveguide. Therefore, even as fabrication tolerance continues to improve, post-fabrication treatment is often the only way of ensuring device uniformity for particularly demanding applications. This work proposes a novel approach for post fabrication trimming of SOI devices based on localised laser annealing of HSQ cladding layer. HSQ is a versatile material often used in fabrication of SOI devices as both the mask material for electron-beam lithography resist and as a cladding or planarization layer due to its similarity to conventional silica. However, unlike silica, the refractive index of HSQ can be changed significantly (up to ΔnHSQ = 3.26*10-2) by thermal processing. We utilise this property for trimming by cladding a conventional SOI waveguide optimised for TE propagation (height h=220 nm, width=500nm) with a layer of HSQ and then permanently changing the refractive index of the cladding via laser annealing. This approach allows us to select individual devices and only apply the change where necessary. As a demonstrator, we trim a resonance of a racetrack resonator by 1.3nm. The technique has proven to be robust with no parameter drift observed 7 days after trimming and no thermal cross-talk to neighbouring devices. Furthermore, unlike its predecessors, it is based on a standard fabrication process and does not require expensive specialised equipment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gas sensing devices using doped silicon material at mid-infrared region Front Matter: Volume 10923 On-chip amplifiers and lasers on the Al2O3 integrated photonics platform (Conference Presentation) Silicon 'photonic molecules' for sensing applications (Conference Presentation) Hydrogen passivation and microstructure fabrication in erbium silicates for optical amplification applications around 1.5 um (Conference Presentation)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1