包括多孔介质效应在内的页岩相平衡

D. Lemus, Wei Yan, E. Stenby
{"title":"包括多孔介质效应在内的页岩相平衡","authors":"D. Lemus, Wei Yan, E. Stenby","doi":"10.2118/197278-ms","DOIUrl":null,"url":null,"abstract":"\n Fluid PVT is crucial to production of a petroleum reservoir. A complete PVT study requires high quality experimental measurement combined with subsequent efforts in PVT modelling. In contrast with the relatively matured PVT study for conventional reservoirs, PVT study for shale has a number of challenges. It is difficult to get representative fluid samples; and there are various speculations on how porous media can influence fluid PVT. For modeling shale PVT, it is necessary to consider the wall effects of the rock, mainly in terms of capillary pressure and adsorption. This requires robust algorithms as well as adequate procedures to integrate available experimental information into PVT modeling. Previously, we developed equilibrium calculation algorithms with capillary pressure and adsorption and modelled adsorption equilibrium in shale. Here we further integrate them into a PVT tool for PVT simulation, analysis of shale production, and gas injection in shale. The core module in the PVT calculation is flash with capillary pressure and adsorption. A robust flash module forms the basis of PVT simulation. The capillary pressure is described through the Young-Laplace equation. For adsorption, it requires a proper workflow to bridge the limited experimental measurement and the final modeling covering a wider range of hydrocarbons. It is recommended to model the available adsorption data for light gases using a theoretical adsorption model, and then extrapolate the model parameters to heavier hydrocarbons. The generated data from the theoretical model is then fitted to the simplified and more computationally convenient Langmuir model. The flash module can also be integrated into a slimtube simulator to study the porous media effects on gas injection applications. Capillary pressure alone lowers the bubble point pressure and the extent is system dependent. Nevertheless, even for systems with a moderate decrease, the change in the PVT properties in the two-phase region cannot be overlooked. Selective adsorption alters the bulk fluid composition and lowers the heavy components concentration in general. Adsorption is generally more pronounced in the gas region whereas capillary pressure is usually more obvious in the liquid region. Regarding the influence of capillary pressure on gas injection, it can be shown that the recoveries at pressures below the minimum miscibility pressure (MMP) are changed; however, the MMP does not seem to be affected due to the vanishing of capillarity effects. For the gas injection including adsorption, the results show that the recovery decreases if adsorption is considered. This is mainly due to adsorption of heavy components, and desorption of lighter components during the process. The heavy components stay in the adsorbed phase, and will not likely be recovered even at high injection pressures. The present study integrates our previous results on algorithms and modeling into a PVT tool for analyzing shale production. It can be used to infer what the initial fluid composition is in the shale reservoir, and to analyze how capillary pressure and adsorption influence shale production during a depletion procedure. Furthermore, the tool also allows a more advanced analysis for gas injection in shale.","PeriodicalId":11091,"journal":{"name":"Day 3 Wed, November 13, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Phase Equilibrium in Shale Including Porous Media Effects\",\"authors\":\"D. Lemus, Wei Yan, E. Stenby\",\"doi\":\"10.2118/197278-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Fluid PVT is crucial to production of a petroleum reservoir. A complete PVT study requires high quality experimental measurement combined with subsequent efforts in PVT modelling. In contrast with the relatively matured PVT study for conventional reservoirs, PVT study for shale has a number of challenges. It is difficult to get representative fluid samples; and there are various speculations on how porous media can influence fluid PVT. For modeling shale PVT, it is necessary to consider the wall effects of the rock, mainly in terms of capillary pressure and adsorption. This requires robust algorithms as well as adequate procedures to integrate available experimental information into PVT modeling. Previously, we developed equilibrium calculation algorithms with capillary pressure and adsorption and modelled adsorption equilibrium in shale. Here we further integrate them into a PVT tool for PVT simulation, analysis of shale production, and gas injection in shale. The core module in the PVT calculation is flash with capillary pressure and adsorption. A robust flash module forms the basis of PVT simulation. The capillary pressure is described through the Young-Laplace equation. For adsorption, it requires a proper workflow to bridge the limited experimental measurement and the final modeling covering a wider range of hydrocarbons. It is recommended to model the available adsorption data for light gases using a theoretical adsorption model, and then extrapolate the model parameters to heavier hydrocarbons. The generated data from the theoretical model is then fitted to the simplified and more computationally convenient Langmuir model. The flash module can also be integrated into a slimtube simulator to study the porous media effects on gas injection applications. Capillary pressure alone lowers the bubble point pressure and the extent is system dependent. Nevertheless, even for systems with a moderate decrease, the change in the PVT properties in the two-phase region cannot be overlooked. Selective adsorption alters the bulk fluid composition and lowers the heavy components concentration in general. Adsorption is generally more pronounced in the gas region whereas capillary pressure is usually more obvious in the liquid region. Regarding the influence of capillary pressure on gas injection, it can be shown that the recoveries at pressures below the minimum miscibility pressure (MMP) are changed; however, the MMP does not seem to be affected due to the vanishing of capillarity effects. For the gas injection including adsorption, the results show that the recovery decreases if adsorption is considered. This is mainly due to adsorption of heavy components, and desorption of lighter components during the process. The heavy components stay in the adsorbed phase, and will not likely be recovered even at high injection pressures. The present study integrates our previous results on algorithms and modeling into a PVT tool for analyzing shale production. It can be used to infer what the initial fluid composition is in the shale reservoir, and to analyze how capillary pressure and adsorption influence shale production during a depletion procedure. Furthermore, the tool also allows a more advanced analysis for gas injection in shale.\",\"PeriodicalId\":11091,\"journal\":{\"name\":\"Day 3 Wed, November 13, 2019\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Wed, November 13, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/197278-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, November 13, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/197278-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

流体PVT对油藏的生产至关重要。一个完整的PVT研究需要高质量的实验测量和后续的PVT建模工作。与相对成熟的常规储层PVT研究相比,页岩PVT研究面临许多挑战。难以获得具有代表性的流体样品;对于多孔介质如何影响流体PVT有各种各样的推测。对于页岩PVT建模,需要考虑岩石的壁面效应,主要是毛管压力和吸附。这需要稳健的算法以及适当的程序来将可用的实验信息整合到PVT建模中。在此之前,我们开发了毛细管压力和吸附平衡计算算法,并模拟了页岩中的吸附平衡。在这里,我们进一步将它们集成到PVT工具中,用于PVT模拟、页岩生产分析和页岩注气。PVT计算的核心模块是带毛细压力和吸附的闪蒸。一个鲁棒的闪光模块构成了PVT仿真的基础。毛细管压力用Young-Laplace方程描述。对于吸附,它需要一个适当的工作流程来连接有限的实验测量和覆盖更广泛碳氢化合物的最终建模。建议使用理论吸附模型对可获得的轻质气体吸附数据进行建模,然后将模型参数外推到较重的碳氢化合物。然后将理论模型生成的数据拟合到简化且计算更方便的Langmuir模型中。闪光模块还可以集成到细管模拟器中,以研究多孔介质对注气应用的影响。毛细管压力单独降低泡点压力,其程度与系统有关。然而,即使系统有一个适度的减少,在两相区域的PVT性质的变化不能被忽视。一般来说,选择性吸附改变了散装流体的组成,降低了重质组分的浓度。吸附通常在气区更明显,而毛细压力通常在液体区更明显。对于毛管压力对注气的影响,可以看出,在低于最小混相压力(MMP)的压力下,采收率发生了变化;然而,由于毛细效应的消失,MMP似乎没有受到影响。对于含吸附的注气,如果考虑吸附,则采收率降低。这主要是由于在此过程中重组分的吸附和轻组分的解吸。重组分停留在吸附相,即使在高注入压力下也不可能被回收。目前的研究将我们之前的算法和建模结果整合到一个用于分析页岩产量的PVT工具中。它可以用来推断页岩储层中的初始流体成分,并分析在枯竭过程中毛管压力和吸附如何影响页岩产量。此外,该工具还可以对页岩气注入进行更高级的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phase Equilibrium in Shale Including Porous Media Effects
Fluid PVT is crucial to production of a petroleum reservoir. A complete PVT study requires high quality experimental measurement combined with subsequent efforts in PVT modelling. In contrast with the relatively matured PVT study for conventional reservoirs, PVT study for shale has a number of challenges. It is difficult to get representative fluid samples; and there are various speculations on how porous media can influence fluid PVT. For modeling shale PVT, it is necessary to consider the wall effects of the rock, mainly in terms of capillary pressure and adsorption. This requires robust algorithms as well as adequate procedures to integrate available experimental information into PVT modeling. Previously, we developed equilibrium calculation algorithms with capillary pressure and adsorption and modelled adsorption equilibrium in shale. Here we further integrate them into a PVT tool for PVT simulation, analysis of shale production, and gas injection in shale. The core module in the PVT calculation is flash with capillary pressure and adsorption. A robust flash module forms the basis of PVT simulation. The capillary pressure is described through the Young-Laplace equation. For adsorption, it requires a proper workflow to bridge the limited experimental measurement and the final modeling covering a wider range of hydrocarbons. It is recommended to model the available adsorption data for light gases using a theoretical adsorption model, and then extrapolate the model parameters to heavier hydrocarbons. The generated data from the theoretical model is then fitted to the simplified and more computationally convenient Langmuir model. The flash module can also be integrated into a slimtube simulator to study the porous media effects on gas injection applications. Capillary pressure alone lowers the bubble point pressure and the extent is system dependent. Nevertheless, even for systems with a moderate decrease, the change in the PVT properties in the two-phase region cannot be overlooked. Selective adsorption alters the bulk fluid composition and lowers the heavy components concentration in general. Adsorption is generally more pronounced in the gas region whereas capillary pressure is usually more obvious in the liquid region. Regarding the influence of capillary pressure on gas injection, it can be shown that the recoveries at pressures below the minimum miscibility pressure (MMP) are changed; however, the MMP does not seem to be affected due to the vanishing of capillarity effects. For the gas injection including adsorption, the results show that the recovery decreases if adsorption is considered. This is mainly due to adsorption of heavy components, and desorption of lighter components during the process. The heavy components stay in the adsorbed phase, and will not likely be recovered even at high injection pressures. The present study integrates our previous results on algorithms and modeling into a PVT tool for analyzing shale production. It can be used to infer what the initial fluid composition is in the shale reservoir, and to analyze how capillary pressure and adsorption influence shale production during a depletion procedure. Furthermore, the tool also allows a more advanced analysis for gas injection in shale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Treatment of Produced Water with Back Produced ASP Using Analytics to Assess Health Status of DLE Combustion Gas Turbines Design of Economical Polymer and Surfactant-Polymer Processes in High Temperature Carbonated Um Gudair Kuwaiti Field. Enhancement of Routine Data Acquisition in a Giant Offshore Brownfield by Bridging Gaps Identified Through Comprehensive Data Analysis Applying Brain Science to Achieve Organizational Success
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1