用模糊集进行统计分析的一般模型:可辨识性和统计性质的充分条件

Max A. Woodbury, Kenneth G. Manton, H.Dennis Tolley
{"title":"用模糊集进行统计分析的一般模型:可辨识性和统计性质的充分条件","authors":"Max A. Woodbury,&nbsp;Kenneth G. Manton,&nbsp;H.Dennis Tolley","doi":"10.1016/1069-0115(94)90007-8","DOIUrl":null,"url":null,"abstract":"<div><p>Fuzzy sets and fuzzy state modeling require modifications of fundamental principles of statistical estimation and inference. These modifications trade increased computational effort for greater generality of data representation. For example, multivariate discrete response data of high (but finite) dimensionality present the problem of analyzing large numbers of cells with low event counts due to finite sample size. It would be useful to have a model based on an invariant metric to represent such data parsimoniously with a latent “smoothed” or low dimensional parametric structure. Determining the parameterization of such a model is difficult since multivariate normality (i.e., that all significant information is represented in the second order moments matrix), an assumption often used in fitting the most common types of latent variable models, is not appropriate. We present a fuzzy set model to analyze high dimensional categorical data where a metric for grades of membership in fuzzy sets is determined by latent convex sets, within which moments up to order <em>J</em> of a discrete distribution can be represented. The model, based on a fuzzy set parameterization, can be shown, using theorems on convex polytopes [1], to be dependent on only the enclosing linear space of the convex set. It is otherwise measure invariant. We discuss the geometry of the model's parameter space, the relation of the convex structure of model parameters to the dual nature of the case and variable spaces, how that duality relates to describing fuzzy set spaces, and modified principles of estimation.</p></div>","PeriodicalId":100668,"journal":{"name":"Information Sciences - Applications","volume":"1 3","pages":"Pages 149-180"},"PeriodicalIF":0.0000,"publicationDate":"1994-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/1069-0115(94)90007-8","citationCount":"31","resultStr":"{\"title\":\"A general model for statistical analysis using fuzzy sets: Sufficient conditions for identifiability and statistical properties\",\"authors\":\"Max A. Woodbury,&nbsp;Kenneth G. Manton,&nbsp;H.Dennis Tolley\",\"doi\":\"10.1016/1069-0115(94)90007-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fuzzy sets and fuzzy state modeling require modifications of fundamental principles of statistical estimation and inference. These modifications trade increased computational effort for greater generality of data representation. For example, multivariate discrete response data of high (but finite) dimensionality present the problem of analyzing large numbers of cells with low event counts due to finite sample size. It would be useful to have a model based on an invariant metric to represent such data parsimoniously with a latent “smoothed” or low dimensional parametric structure. Determining the parameterization of such a model is difficult since multivariate normality (i.e., that all significant information is represented in the second order moments matrix), an assumption often used in fitting the most common types of latent variable models, is not appropriate. We present a fuzzy set model to analyze high dimensional categorical data where a metric for grades of membership in fuzzy sets is determined by latent convex sets, within which moments up to order <em>J</em> of a discrete distribution can be represented. The model, based on a fuzzy set parameterization, can be shown, using theorems on convex polytopes [1], to be dependent on only the enclosing linear space of the convex set. It is otherwise measure invariant. We discuss the geometry of the model's parameter space, the relation of the convex structure of model parameters to the dual nature of the case and variable spaces, how that duality relates to describing fuzzy set spaces, and modified principles of estimation.</p></div>\",\"PeriodicalId\":100668,\"journal\":{\"name\":\"Information Sciences - Applications\",\"volume\":\"1 3\",\"pages\":\"Pages 149-180\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/1069-0115(94)90007-8\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Sciences - Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/1069011594900078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences - Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/1069011594900078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

模糊集和模糊状态建模需要修改统计估计和推理的基本原理。这些修改以增加的计算工作量换取更普遍的数据表示。例如,高(但有限)维的多变量离散响应数据,由于样本量有限,在分析具有低事件计数的大量单元时存在问题。有一个基于不变度量的模型,用潜在的“平滑”或低维参数结构简洁地表示这些数据将是有用的。确定这样一个模型的参数化是困难的,因为多元正态性(即,所有重要信息都在二阶矩矩阵中表示)是不合适的,这是一个经常用于拟合最常见类型的潜在变量模型的假设。我们提出了一个模糊集模型来分析高维分类数据,其中模糊集的隶属度等级的度量是由隐凸集确定的,在隐凸集内,离散分布的矩可以表示为J阶。该模型基于模糊集参数化,利用凸多面体[1]上的定理,证明了该模型仅依赖于凸集的封闭线性空间。它是测度不变的。我们讨论了模型参数空间的几何结构,模型参数的凸结构与情况和变量空间的对偶性质的关系,对偶性如何与描述模糊集合空间有关,以及改进的估计原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A general model for statistical analysis using fuzzy sets: Sufficient conditions for identifiability and statistical properties

Fuzzy sets and fuzzy state modeling require modifications of fundamental principles of statistical estimation and inference. These modifications trade increased computational effort for greater generality of data representation. For example, multivariate discrete response data of high (but finite) dimensionality present the problem of analyzing large numbers of cells with low event counts due to finite sample size. It would be useful to have a model based on an invariant metric to represent such data parsimoniously with a latent “smoothed” or low dimensional parametric structure. Determining the parameterization of such a model is difficult since multivariate normality (i.e., that all significant information is represented in the second order moments matrix), an assumption often used in fitting the most common types of latent variable models, is not appropriate. We present a fuzzy set model to analyze high dimensional categorical data where a metric for grades of membership in fuzzy sets is determined by latent convex sets, within which moments up to order J of a discrete distribution can be represented. The model, based on a fuzzy set parameterization, can be shown, using theorems on convex polytopes [1], to be dependent on only the enclosing linear space of the convex set. It is otherwise measure invariant. We discuss the geometry of the model's parameter space, the relation of the convex structure of model parameters to the dual nature of the case and variable spaces, how that duality relates to describing fuzzy set spaces, and modified principles of estimation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An application of fuzzy logic control to a gimballed payload on a space platform Logic programming and the execution model of Prolog Author index to volumes 3–4 Volume contents for 1995 Title index for volume 3–4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1