{"title":"磁各向异性的机械调谐","authors":"M. M. Torunbalci, S. Bhave","doi":"10.1109/MEMS46641.2020.9056417","DOIUrl":null,"url":null,"abstract":"This paper demonstrates piezo-mechanical manipulation of magnetic anisotropy in a thin-film CoFeB ferromagnet (FM) via magnetostriction effect. A 20 nm thick CoFeB resistor is fabricated at the base of an AlN cantilever and its magnetization change is detected by measuring anisotropic magnetoresistance (AMR). The uniaxial strain induced in the CoFeB strip by cantilever bending exhibits a 22% change in AMR and rotates the magnetic anisotropy by 20°.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"120 1","pages":"1145-1148"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical Tuning of Magnetic Anisotropy\",\"authors\":\"M. M. Torunbalci, S. Bhave\",\"doi\":\"10.1109/MEMS46641.2020.9056417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates piezo-mechanical manipulation of magnetic anisotropy in a thin-film CoFeB ferromagnet (FM) via magnetostriction effect. A 20 nm thick CoFeB resistor is fabricated at the base of an AlN cantilever and its magnetization change is detected by measuring anisotropic magnetoresistance (AMR). The uniaxial strain induced in the CoFeB strip by cantilever bending exhibits a 22% change in AMR and rotates the magnetic anisotropy by 20°.\",\"PeriodicalId\":6776,\"journal\":{\"name\":\"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"120 1\",\"pages\":\"1145-1148\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMS46641.2020.9056417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMS46641.2020.9056417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper demonstrates piezo-mechanical manipulation of magnetic anisotropy in a thin-film CoFeB ferromagnet (FM) via magnetostriction effect. A 20 nm thick CoFeB resistor is fabricated at the base of an AlN cantilever and its magnetization change is detected by measuring anisotropic magnetoresistance (AMR). The uniaxial strain induced in the CoFeB strip by cantilever bending exhibits a 22% change in AMR and rotates the magnetic anisotropy by 20°.