Artem Melnikov, Alena A. Termanova, Sergey V. Dolgov, Florian Neukart, M. Perelshtein
{"title":"利用张量网络制备量子态","authors":"Artem Melnikov, Alena A. Termanova, Sergey V. Dolgov, Florian Neukart, M. Perelshtein","doi":"10.1088/2058-9565/acd9e7","DOIUrl":null,"url":null,"abstract":"Quantum state preparation is a vital routine in many quantum algorithms, including solution of linear systems of equations, Monte Carlo simulations, quantum sampling, and machine learning. However, to date, there is no established framework of encoding classical data into gate-based quantum devices. In this work, we propose a method for the encoding of vectors obtained by sampling analytical functions into quantum circuits that features polynomial runtime with respect to the number of qubits and provides >99.9% accuracy, which is better than a state-of-the-art two-qubit gate fidelity. We employ hardware-efficient variational quantum circuits, which are simulated using tensor networks, and matrix product state representation of vectors. In order to tune variational gates, we utilize Riemannian optimization incorporating auto-gradient calculation. Besides, we propose a ‘cut once, measure twice’ method, which allows us to avoid barren plateaus during gates’ update, benchmarking it up to 100-qubit circuits. Remarkably, any vectors that feature low-rank structure—not limited by analytical functions—can be encoded using the presented approach. Our method can be easily implemented on modern quantum hardware, and facilitates the use of the hybrid-quantum computing architectures.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"89 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Quantum state preparation using tensor networks\",\"authors\":\"Artem Melnikov, Alena A. Termanova, Sergey V. Dolgov, Florian Neukart, M. Perelshtein\",\"doi\":\"10.1088/2058-9565/acd9e7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum state preparation is a vital routine in many quantum algorithms, including solution of linear systems of equations, Monte Carlo simulations, quantum sampling, and machine learning. However, to date, there is no established framework of encoding classical data into gate-based quantum devices. In this work, we propose a method for the encoding of vectors obtained by sampling analytical functions into quantum circuits that features polynomial runtime with respect to the number of qubits and provides >99.9% accuracy, which is better than a state-of-the-art two-qubit gate fidelity. We employ hardware-efficient variational quantum circuits, which are simulated using tensor networks, and matrix product state representation of vectors. In order to tune variational gates, we utilize Riemannian optimization incorporating auto-gradient calculation. Besides, we propose a ‘cut once, measure twice’ method, which allows us to avoid barren plateaus during gates’ update, benchmarking it up to 100-qubit circuits. Remarkably, any vectors that feature low-rank structure—not limited by analytical functions—can be encoded using the presented approach. Our method can be easily implemented on modern quantum hardware, and facilitates the use of the hybrid-quantum computing architectures.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/acd9e7\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/acd9e7","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Quantum state preparation is a vital routine in many quantum algorithms, including solution of linear systems of equations, Monte Carlo simulations, quantum sampling, and machine learning. However, to date, there is no established framework of encoding classical data into gate-based quantum devices. In this work, we propose a method for the encoding of vectors obtained by sampling analytical functions into quantum circuits that features polynomial runtime with respect to the number of qubits and provides >99.9% accuracy, which is better than a state-of-the-art two-qubit gate fidelity. We employ hardware-efficient variational quantum circuits, which are simulated using tensor networks, and matrix product state representation of vectors. In order to tune variational gates, we utilize Riemannian optimization incorporating auto-gradient calculation. Besides, we propose a ‘cut once, measure twice’ method, which allows us to avoid barren plateaus during gates’ update, benchmarking it up to 100-qubit circuits. Remarkably, any vectors that feature low-rank structure—not limited by analytical functions—can be encoded using the presented approach. Our method can be easily implemented on modern quantum hardware, and facilitates the use of the hybrid-quantum computing architectures.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.