利用张量网络制备量子态

IF 5.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Quantum Science and Technology Pub Date : 2023-05-30 DOI:10.1088/2058-9565/acd9e7
Artem Melnikov, Alena A. Termanova, Sergey V. Dolgov, Florian Neukart, M. Perelshtein
{"title":"利用张量网络制备量子态","authors":"Artem Melnikov, Alena A. Termanova, Sergey V. Dolgov, Florian Neukart, M. Perelshtein","doi":"10.1088/2058-9565/acd9e7","DOIUrl":null,"url":null,"abstract":"Quantum state preparation is a vital routine in many quantum algorithms, including solution of linear systems of equations, Monte Carlo simulations, quantum sampling, and machine learning. However, to date, there is no established framework of encoding classical data into gate-based quantum devices. In this work, we propose a method for the encoding of vectors obtained by sampling analytical functions into quantum circuits that features polynomial runtime with respect to the number of qubits and provides >99.9% accuracy, which is better than a state-of-the-art two-qubit gate fidelity. We employ hardware-efficient variational quantum circuits, which are simulated using tensor networks, and matrix product state representation of vectors. In order to tune variational gates, we utilize Riemannian optimization incorporating auto-gradient calculation. Besides, we propose a ‘cut once, measure twice’ method, which allows us to avoid barren plateaus during gates’ update, benchmarking it up to 100-qubit circuits. Remarkably, any vectors that feature low-rank structure—not limited by analytical functions—can be encoded using the presented approach. Our method can be easily implemented on modern quantum hardware, and facilitates the use of the hybrid-quantum computing architectures.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"89 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Quantum state preparation using tensor networks\",\"authors\":\"Artem Melnikov, Alena A. Termanova, Sergey V. Dolgov, Florian Neukart, M. Perelshtein\",\"doi\":\"10.1088/2058-9565/acd9e7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum state preparation is a vital routine in many quantum algorithms, including solution of linear systems of equations, Monte Carlo simulations, quantum sampling, and machine learning. However, to date, there is no established framework of encoding classical data into gate-based quantum devices. In this work, we propose a method for the encoding of vectors obtained by sampling analytical functions into quantum circuits that features polynomial runtime with respect to the number of qubits and provides >99.9% accuracy, which is better than a state-of-the-art two-qubit gate fidelity. We employ hardware-efficient variational quantum circuits, which are simulated using tensor networks, and matrix product state representation of vectors. In order to tune variational gates, we utilize Riemannian optimization incorporating auto-gradient calculation. Besides, we propose a ‘cut once, measure twice’ method, which allows us to avoid barren plateaus during gates’ update, benchmarking it up to 100-qubit circuits. Remarkably, any vectors that feature low-rank structure—not limited by analytical functions—can be encoded using the presented approach. Our method can be easily implemented on modern quantum hardware, and facilitates the use of the hybrid-quantum computing architectures.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/acd9e7\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/acd9e7","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

摘要

在许多量子算法中,量子态制备是一个至关重要的程序,包括线性方程组的解,蒙特卡罗模拟,量子采样和机器学习。然而,到目前为止,还没有将经典数据编码到基于门的量子器件中的既定框架。在这项工作中,我们提出了一种将分析函数采样到量子电路中获得的向量进行编码的方法,该方法的运行时间相对于量子比特的数量是多项式的,并且提供了>99.9%的精度,这比最先进的双量子比特门保真度要好。我们采用硬件高效的变分量子电路,使用张量网络和向量的矩阵积状态表示进行模拟。为了调整变分门,我们利用黎曼优化结合自动梯度计算。此外,我们提出了一种“一次切断,两次测量”的方法,这使我们能够避免在门的更新过程中出现贫瘠的高原,对其进行基准测试,最高可达100量子位电路。值得注意的是,任何具有低秩结构特征的向量-不受解析函数的限制-都可以使用所提出的方法进行编码。我们的方法可以很容易地在现代量子硬件上实现,并且有利于混合量子计算架构的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantum state preparation using tensor networks
Quantum state preparation is a vital routine in many quantum algorithms, including solution of linear systems of equations, Monte Carlo simulations, quantum sampling, and machine learning. However, to date, there is no established framework of encoding classical data into gate-based quantum devices. In this work, we propose a method for the encoding of vectors obtained by sampling analytical functions into quantum circuits that features polynomial runtime with respect to the number of qubits and provides >99.9% accuracy, which is better than a state-of-the-art two-qubit gate fidelity. We employ hardware-efficient variational quantum circuits, which are simulated using tensor networks, and matrix product state representation of vectors. In order to tune variational gates, we utilize Riemannian optimization incorporating auto-gradient calculation. Besides, we propose a ‘cut once, measure twice’ method, which allows us to avoid barren plateaus during gates’ update, benchmarking it up to 100-qubit circuits. Remarkably, any vectors that feature low-rank structure—not limited by analytical functions—can be encoded using the presented approach. Our method can be easily implemented on modern quantum hardware, and facilitates the use of the hybrid-quantum computing architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
期刊最新文献
Quantum state tomography based on infidelity estimation Near-optimal quantum kernel principal component analysis Bayesian optimization for state engineering of quantum gases Ramsey interferometry of nuclear spins in diamond using stimulated Raman adiabatic passage Reducing measurement costs by recycling the Hessian in adaptive variational quantum algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1