通过气化-费托路线的太阳能驱动液体燃料生产工厂的系统级模拟

Ali Shirazi, A. Rahbari, John Pye
{"title":"通过气化-费托路线的太阳能驱动液体燃料生产工厂的系统级模拟","authors":"Ali Shirazi, A. Rahbari, John Pye","doi":"10.1063/1.5117696","DOIUrl":null,"url":null,"abstract":"Conversion of algae into liquid fuels via solar-driven supercritical water gasification (SCWG) with steam methane reforming (SMR) and Fischer–Tropsch (FT) synthesis offers a promising approach for production of clean fuels. While much research has been dedicated to the analysis of biomass gasification, methane reforming and FT synthesis separately, little emphasis has been placed on a fully integrated system based on these components especially when a variable heat source – i.e. concentrating solar thermal (CST) – is involved. As such, this paper investigates the annual dynamic performance and techno-economic feasibility of this technology at a system level. A detailed steady-state model of the SCWG-SMR and FT plants is developed in ASPEN Plus software. Based on performance curves of key component quantities at design and off-design points, an energy-based, system-level model of the whole solar fuel plant is developed in OpenModelica. The solar field is sized such that it can deliver 50 MWth to the receiver at design. The results of the parametric study suggest that the optimal solar multiple and syngas storage size are 3.5 and 16 hours, respectively, leading to a levelised cost of fuel (LCOF) of 3.2 AUD/L (∼2.3 USD/L) and a capacity factor of ∼71%. The total capital and annual operational costs of the system are found to be ∼162 M-AUD and ∼24 M-AUD per year, respectively. Although the estimated LCOF in this study seems to be relatively high compared to fossil fuel-based petroleum products, this technology is expected to be economically competitive in the near future through e.g. upscaling the plant size and further reduction in the algae production cost.","PeriodicalId":21790,"journal":{"name":"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"System-level simulation of a solar-driven liquid fuel production plant via gasification-Fischer-Tropsch route\",\"authors\":\"Ali Shirazi, A. Rahbari, John Pye\",\"doi\":\"10.1063/1.5117696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conversion of algae into liquid fuels via solar-driven supercritical water gasification (SCWG) with steam methane reforming (SMR) and Fischer–Tropsch (FT) synthesis offers a promising approach for production of clean fuels. While much research has been dedicated to the analysis of biomass gasification, methane reforming and FT synthesis separately, little emphasis has been placed on a fully integrated system based on these components especially when a variable heat source – i.e. concentrating solar thermal (CST) – is involved. As such, this paper investigates the annual dynamic performance and techno-economic feasibility of this technology at a system level. A detailed steady-state model of the SCWG-SMR and FT plants is developed in ASPEN Plus software. Based on performance curves of key component quantities at design and off-design points, an energy-based, system-level model of the whole solar fuel plant is developed in OpenModelica. The solar field is sized such that it can deliver 50 MWth to the receiver at design. The results of the parametric study suggest that the optimal solar multiple and syngas storage size are 3.5 and 16 hours, respectively, leading to a levelised cost of fuel (LCOF) of 3.2 AUD/L (∼2.3 USD/L) and a capacity factor of ∼71%. The total capital and annual operational costs of the system are found to be ∼162 M-AUD and ∼24 M-AUD per year, respectively. Although the estimated LCOF in this study seems to be relatively high compared to fossil fuel-based petroleum products, this technology is expected to be economically competitive in the near future through e.g. upscaling the plant size and further reduction in the algae production cost.\",\"PeriodicalId\":21790,\"journal\":{\"name\":\"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5117696\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5117696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过太阳能驱动的超临界水气化(SCWG)、蒸汽甲烷重整(SMR)和费托合成(FT)将藻类转化为液体燃料,为生产清洁燃料提供了一种很有前途的方法。虽然许多研究分别致力于分析生物质气化、甲烷重整和FT合成,但很少强调基于这些组成部分的完全集成系统,特别是当涉及可变热源-即聚光太阳能热(CST)时。因此,本文从系统层面对该技术的年度动态性能和技术经济可行性进行了研究。在ASPEN Plus软件中建立了SCWG-SMR和FT装置的详细稳态模型。基于关键部件数量在设计点和非设计点的性能曲线,在OpenModelica中开发了整个太阳能燃料厂的基于能量的系统级模型。太阳能场的大小是这样的,它可以提供50兆瓦的接收器在设计。参数化研究结果表明,最佳太阳能倍率和合成气储存尺寸分别为3.5和16小时,导致燃料平准化成本(LCOF)为3.2澳元/升(~ 2.3美元/升),容量系数为~ 71%。该系统的总资本和年运营成本分别为每年约162亿澳元和每年约24亿澳元。尽管与基于化石燃料的石油产品相比,本研究中估计的lof似乎相对较高,但通过扩大工厂规模和进一步降低藻类生产成本,该技术有望在不久的将来具有经济竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
System-level simulation of a solar-driven liquid fuel production plant via gasification-Fischer-Tropsch route
Conversion of algae into liquid fuels via solar-driven supercritical water gasification (SCWG) with steam methane reforming (SMR) and Fischer–Tropsch (FT) synthesis offers a promising approach for production of clean fuels. While much research has been dedicated to the analysis of biomass gasification, methane reforming and FT synthesis separately, little emphasis has been placed on a fully integrated system based on these components especially when a variable heat source – i.e. concentrating solar thermal (CST) – is involved. As such, this paper investigates the annual dynamic performance and techno-economic feasibility of this technology at a system level. A detailed steady-state model of the SCWG-SMR and FT plants is developed in ASPEN Plus software. Based on performance curves of key component quantities at design and off-design points, an energy-based, system-level model of the whole solar fuel plant is developed in OpenModelica. The solar field is sized such that it can deliver 50 MWth to the receiver at design. The results of the parametric study suggest that the optimal solar multiple and syngas storage size are 3.5 and 16 hours, respectively, leading to a levelised cost of fuel (LCOF) of 3.2 AUD/L (∼2.3 USD/L) and a capacity factor of ∼71%. The total capital and annual operational costs of the system are found to be ∼162 M-AUD and ∼24 M-AUD per year, respectively. Although the estimated LCOF in this study seems to be relatively high compared to fossil fuel-based petroleum products, this technology is expected to be economically competitive in the near future through e.g. upscaling the plant size and further reduction in the algae production cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High-accuracy real-time monitoring of solar radiation attenuation in commercial solar towers Optical and thermal performance of a novel solar particle receiver The fluidized bed air heat exchanger in a hybrid Brayton-cycle solar power plant “MOSAIC”, A new CSP plant concept for the highest concentration ratios at the lowest cost Value contribution of solar plants to the Chilean electric system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1