Khalid L. Alsamadony, E. U. Yildirim, G. Glatz, Umair Bin Waheed, Sherif M. Hanafy
{"title":"深度学习实现多孔介质计算机断层图像去模糊","authors":"Khalid L. Alsamadony, E. U. Yildirim, G. Glatz, Umair Bin Waheed, Sherif M. Hanafy","doi":"10.2118/208665-ms","DOIUrl":null,"url":null,"abstract":"\n Computed tomography (CT) is an important tool to characterize rock samples allowing quantification of physical properties in 3D and 4D. The accuracy of a property delineated from CT data is strongly correlated with the CT image quality. In general, high-quality, lower noise CT Images mandate greater exposure times. With increasing exposure time, however, more wear is put on the X-Ray tube and longer cooldown periods are required, inevitably limiting the temporal resolution of the particular phenomena under investigation.\n In this work, we propose a deep convolutional neural network (DCNN) based approach to improve the quality of images collected during reduced exposure time scans. First, we convolve long exposure time images from medical CT scanner with a blur kernel to mimic the degradation caused because of reduced exposure time scanning. Subsequently, utilizing the high- and low-quality scan stacks, we train a DCNN. The trained network enables us to restore any low-quality scan for which high-quality reference is not available. Furthermore, we investigate several factors affecting the DCNN performance such as the number of training images, transfer learning strategies, and loss functions.\n The results indicate that the number of training images is an important factor since the predictive capability of the DCNN improves as the number of training images increases. We illustrate, however, that the requirement for a large training dataset can be reduced by exploiting transfer learning. In addition, training the DCNN on mean squared error (MSE) as a loss function outperforms both mean absolute error (MAE) and Peak signal-to-noise ratio (PSNR) loss functions with respect to image quality metrics.\n The presented approach enables the prediction of high-quality images from low exposure CT images. Consequently, this allows for continued scanning without the need for X-Ray tube to cool down, thereby maximizing the temporal resolution. This is of particular value for any core flood experiment seeking to capture the underlying dynamics.","PeriodicalId":10904,"journal":{"name":"Day 2 Tue, October 19, 2021","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Enabled Deblurring of Computed Tomography Images of Porous Media\",\"authors\":\"Khalid L. Alsamadony, E. U. Yildirim, G. Glatz, Umair Bin Waheed, Sherif M. Hanafy\",\"doi\":\"10.2118/208665-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Computed tomography (CT) is an important tool to characterize rock samples allowing quantification of physical properties in 3D and 4D. The accuracy of a property delineated from CT data is strongly correlated with the CT image quality. In general, high-quality, lower noise CT Images mandate greater exposure times. With increasing exposure time, however, more wear is put on the X-Ray tube and longer cooldown periods are required, inevitably limiting the temporal resolution of the particular phenomena under investigation.\\n In this work, we propose a deep convolutional neural network (DCNN) based approach to improve the quality of images collected during reduced exposure time scans. First, we convolve long exposure time images from medical CT scanner with a blur kernel to mimic the degradation caused because of reduced exposure time scanning. Subsequently, utilizing the high- and low-quality scan stacks, we train a DCNN. The trained network enables us to restore any low-quality scan for which high-quality reference is not available. Furthermore, we investigate several factors affecting the DCNN performance such as the number of training images, transfer learning strategies, and loss functions.\\n The results indicate that the number of training images is an important factor since the predictive capability of the DCNN improves as the number of training images increases. We illustrate, however, that the requirement for a large training dataset can be reduced by exploiting transfer learning. In addition, training the DCNN on mean squared error (MSE) as a loss function outperforms both mean absolute error (MAE) and Peak signal-to-noise ratio (PSNR) loss functions with respect to image quality metrics.\\n The presented approach enables the prediction of high-quality images from low exposure CT images. Consequently, this allows for continued scanning without the need for X-Ray tube to cool down, thereby maximizing the temporal resolution. This is of particular value for any core flood experiment seeking to capture the underlying dynamics.\",\"PeriodicalId\":10904,\"journal\":{\"name\":\"Day 2 Tue, October 19, 2021\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, October 19, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/208665-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, October 19, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/208665-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Learning Enabled Deblurring of Computed Tomography Images of Porous Media
Computed tomography (CT) is an important tool to characterize rock samples allowing quantification of physical properties in 3D and 4D. The accuracy of a property delineated from CT data is strongly correlated with the CT image quality. In general, high-quality, lower noise CT Images mandate greater exposure times. With increasing exposure time, however, more wear is put on the X-Ray tube and longer cooldown periods are required, inevitably limiting the temporal resolution of the particular phenomena under investigation.
In this work, we propose a deep convolutional neural network (DCNN) based approach to improve the quality of images collected during reduced exposure time scans. First, we convolve long exposure time images from medical CT scanner with a blur kernel to mimic the degradation caused because of reduced exposure time scanning. Subsequently, utilizing the high- and low-quality scan stacks, we train a DCNN. The trained network enables us to restore any low-quality scan for which high-quality reference is not available. Furthermore, we investigate several factors affecting the DCNN performance such as the number of training images, transfer learning strategies, and loss functions.
The results indicate that the number of training images is an important factor since the predictive capability of the DCNN improves as the number of training images increases. We illustrate, however, that the requirement for a large training dataset can be reduced by exploiting transfer learning. In addition, training the DCNN on mean squared error (MSE) as a loss function outperforms both mean absolute error (MAE) and Peak signal-to-noise ratio (PSNR) loss functions with respect to image quality metrics.
The presented approach enables the prediction of high-quality images from low exposure CT images. Consequently, this allows for continued scanning without the need for X-Ray tube to cool down, thereby maximizing the temporal resolution. This is of particular value for any core flood experiment seeking to capture the underlying dynamics.