改进机器学习算法在TOR检测中的性能

Adityan Gurunarayanan, Ankit Agrawal, Ashutosh Bhatia, D. Vishwakarma
{"title":"改进机器学习算法在TOR检测中的性能","authors":"Adityan Gurunarayanan, Ankit Agrawal, Ashutosh Bhatia, D. Vishwakarma","doi":"10.1109/ICOIN50884.2021.9333989","DOIUrl":null,"url":null,"abstract":"The Onion Router (TOR) networks provide anonymity, in terms of identity and location, to the Internet users by encrypting traffic multiple times along the path and routing it via an overlay network of servers. Although TOR was initially developed as a medium to maintain users’ privacy, cyber criminals and hackers take advantage of this anonymity, and as a result, many illegal activities are carried out using TOR networks. With the ever-changing landscape of Internet services, traditional traffic analysis methods are not efficient for analyzing encrypted traffic and there is a need for alternative methods for analyzing TOR traffic. In this paper, we develop a machine learning model to identify whether a given network traffic is TOR or nonTOR. We use the ISCX2016 TOR-nonTOR dataset to train our model and perform random oversampling and random undersampling to remove data imbalance. Furthermore, to improve the efficiency of our classifiers, we use k-fold cross-validation and Grid Search algorithms for hyperparameter tuning. Results show that we achieve more than 90% accuracy with random sampling and hyperparameter tuning methods.","PeriodicalId":6741,"journal":{"name":"2021 International Conference on Information Networking (ICOIN)","volume":"15 1","pages":"439-444"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Improving the performance of Machine Learning Algorithms for TOR detection\",\"authors\":\"Adityan Gurunarayanan, Ankit Agrawal, Ashutosh Bhatia, D. Vishwakarma\",\"doi\":\"10.1109/ICOIN50884.2021.9333989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Onion Router (TOR) networks provide anonymity, in terms of identity and location, to the Internet users by encrypting traffic multiple times along the path and routing it via an overlay network of servers. Although TOR was initially developed as a medium to maintain users’ privacy, cyber criminals and hackers take advantage of this anonymity, and as a result, many illegal activities are carried out using TOR networks. With the ever-changing landscape of Internet services, traditional traffic analysis methods are not efficient for analyzing encrypted traffic and there is a need for alternative methods for analyzing TOR traffic. In this paper, we develop a machine learning model to identify whether a given network traffic is TOR or nonTOR. We use the ISCX2016 TOR-nonTOR dataset to train our model and perform random oversampling and random undersampling to remove data imbalance. Furthermore, to improve the efficiency of our classifiers, we use k-fold cross-validation and Grid Search algorithms for hyperparameter tuning. Results show that we achieve more than 90% accuracy with random sampling and hyperparameter tuning methods.\",\"PeriodicalId\":6741,\"journal\":{\"name\":\"2021 International Conference on Information Networking (ICOIN)\",\"volume\":\"15 1\",\"pages\":\"439-444\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Information Networking (ICOIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOIN50884.2021.9333989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Information Networking (ICOIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIN50884.2021.9333989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

洋葱路由器(TOR)网络在身份和位置方面为互联网用户提供匿名性,方法是沿着路径对流量进行多次加密,并通过覆盖的服务器网络进行路由。虽然TOR最初是作为维护用户隐私的媒介而开发的,但网络犯罪分子和黑客利用了这种匿名性,因此,许多非法活动都是利用TOR网络进行的。随着互联网服务环境的不断变化,传统的流量分析方法对加密流量的分析效率低下,需要替代的方法来分析TOR流量。在本文中,我们开发了一个机器学习模型来识别给定的网络流量是TOR还是nonTOR。我们使用ISCX2016 TOR-nonTOR数据集来训练我们的模型,并进行随机过采样和随机欠采样来消除数据不平衡。此外,为了提高分类器的效率,我们使用k-fold交叉验证和网格搜索算法进行超参数调优。结果表明,采用随机采样和超参数整定的方法可以达到90%以上的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving the performance of Machine Learning Algorithms for TOR detection
The Onion Router (TOR) networks provide anonymity, in terms of identity and location, to the Internet users by encrypting traffic multiple times along the path and routing it via an overlay network of servers. Although TOR was initially developed as a medium to maintain users’ privacy, cyber criminals and hackers take advantage of this anonymity, and as a result, many illegal activities are carried out using TOR networks. With the ever-changing landscape of Internet services, traditional traffic analysis methods are not efficient for analyzing encrypted traffic and there is a need for alternative methods for analyzing TOR traffic. In this paper, we develop a machine learning model to identify whether a given network traffic is TOR or nonTOR. We use the ISCX2016 TOR-nonTOR dataset to train our model and perform random oversampling and random undersampling to remove data imbalance. Furthermore, to improve the efficiency of our classifiers, we use k-fold cross-validation and Grid Search algorithms for hyperparameter tuning. Results show that we achieve more than 90% accuracy with random sampling and hyperparameter tuning methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Study on the Cluster-wise Regression Model for Bead Width in the Automatic GMA Welding GDFed: Dynamic Federated Learning for Heterogenous Device Using Graph Neural Network A Solution for Recovering Network Topology with Missing Links using Sparse Modeling Real-time health monitoring system design based on optical camera communication Multimedia Contents Retrieval based on 12-Mood Vector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1