Hadi Hosseinzadegan, H. Aghababa, Mahmoud Zangeneh, A. Afzali-Kusha, B. Forouzandeh
{"title":"碳纳米管场效应晶体管的紧凑电流-电压模型","authors":"Hadi Hosseinzadegan, H. Aghababa, Mahmoud Zangeneh, A. Afzali-Kusha, B. Forouzandeh","doi":"10.1109/SMICND.2008.4703425","DOIUrl":null,"url":null,"abstract":"We report deriving a compact model for CNTFETs, using modified current- voltage relations, commonly used in modeling of CNTFETs. A carbon nanotube with 1.7 nm diameter and 5 nm length has been simulated with a layer of ZrO2 as oxide layer. The thickness of the oxide layer has been considered to be 2 nm. Density of states as a function of Fermi level is considered quadratic for both subthreshold and saturation regime. In this paper, the CNTFET drain current and energy level is derived analytically. Finally, the variation of CNTFET drain current versus gate-source and drain-source voltages will be presented though simulation.","PeriodicalId":6406,"journal":{"name":"2008 IEEE International Conference on Semiconductor Electronics","volume":"5 1","pages":"359-362"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A compact current-voltage model for carbon nanotube field effect transistors\",\"authors\":\"Hadi Hosseinzadegan, H. Aghababa, Mahmoud Zangeneh, A. Afzali-Kusha, B. Forouzandeh\",\"doi\":\"10.1109/SMICND.2008.4703425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report deriving a compact model for CNTFETs, using modified current- voltage relations, commonly used in modeling of CNTFETs. A carbon nanotube with 1.7 nm diameter and 5 nm length has been simulated with a layer of ZrO2 as oxide layer. The thickness of the oxide layer has been considered to be 2 nm. Density of states as a function of Fermi level is considered quadratic for both subthreshold and saturation regime. In this paper, the CNTFET drain current and energy level is derived analytically. Finally, the variation of CNTFET drain current versus gate-source and drain-source voltages will be presented though simulation.\",\"PeriodicalId\":6406,\"journal\":{\"name\":\"2008 IEEE International Conference on Semiconductor Electronics\",\"volume\":\"5 1\",\"pages\":\"359-362\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Semiconductor Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMICND.2008.4703425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Semiconductor Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMICND.2008.4703425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A compact current-voltage model for carbon nanotube field effect transistors
We report deriving a compact model for CNTFETs, using modified current- voltage relations, commonly used in modeling of CNTFETs. A carbon nanotube with 1.7 nm diameter and 5 nm length has been simulated with a layer of ZrO2 as oxide layer. The thickness of the oxide layer has been considered to be 2 nm. Density of states as a function of Fermi level is considered quadratic for both subthreshold and saturation regime. In this paper, the CNTFET drain current and energy level is derived analytically. Finally, the variation of CNTFET drain current versus gate-source and drain-source voltages will be presented though simulation.