相机镜头用光学玻璃材料的核心特性及技术发展现状

J. Choi, Yoon Hee Nam, Karam Han
{"title":"相机镜头用光学玻璃材料的核心特性及技术发展现状","authors":"J. Choi, Yoon Hee Nam, Karam Han","doi":"10.31613/ceramist.2022.25.3.07","DOIUrl":null,"url":null,"abstract":"For core imaging technologies, various R&D for optical lens design have been carried out to realize highresolution images without distortion. The need for systematic analysis of the optical and physical properties of various materials and the correlation for optical lens design has increased. Therefore, core characteristics of visible optical glass material such as refractive index, dispersion value, transmittance, coefficient of thermal expansion, and striae were reviewed from the viewpoint of improving the performance of optical lenses. In this study, the correlation between the refractive index and dispersion value of the optical glass material and the performance of optical lens module is explained by minimizing the chromatic aberration of various wavelength. In addition, we reviewed the refractive index distribution of global leading group's optical glass, which is the most widely used in optical lens manufacturing, and the current status of optical glass technology development at KOPTI.","PeriodicalId":9738,"journal":{"name":"Ceramist","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Core characteristics and technology development status of optical glass materials for camera lenses\",\"authors\":\"J. Choi, Yoon Hee Nam, Karam Han\",\"doi\":\"10.31613/ceramist.2022.25.3.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For core imaging technologies, various R&D for optical lens design have been carried out to realize highresolution images without distortion. The need for systematic analysis of the optical and physical properties of various materials and the correlation for optical lens design has increased. Therefore, core characteristics of visible optical glass material such as refractive index, dispersion value, transmittance, coefficient of thermal expansion, and striae were reviewed from the viewpoint of improving the performance of optical lenses. In this study, the correlation between the refractive index and dispersion value of the optical glass material and the performance of optical lens module is explained by minimizing the chromatic aberration of various wavelength. In addition, we reviewed the refractive index distribution of global leading group's optical glass, which is the most widely used in optical lens manufacturing, and the current status of optical glass technology development at KOPTI.\",\"PeriodicalId\":9738,\"journal\":{\"name\":\"Ceramist\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ceramist\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31613/ceramist.2022.25.3.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramist","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31613/ceramist.2022.25.3.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在核心成像技术方面,进行了各种光学透镜设计的研发,以实现无畸变的高分辨率图像。系统分析各种材料的光学性质和物理性质以及光学透镜设计的相关性的需求日益增加。因此,从提高光学透镜性能的角度出发,对可见光玻璃材料的折射率、色散值、透过率、热膨胀系数、条纹等核心特性进行了综述。在本研究中,光学玻璃材料的折射率和色散值与光学透镜模组性能之间的关系是通过最小化各种波长的色差来解释的。此外,我们还回顾了全球领先集团在光学透镜制造中应用最广泛的光学玻璃的折射率分布,以及KOPTI光学玻璃技术发展的现状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Core characteristics and technology development status of optical glass materials for camera lenses
For core imaging technologies, various R&D for optical lens design have been carried out to realize highresolution images without distortion. The need for systematic analysis of the optical and physical properties of various materials and the correlation for optical lens design has increased. Therefore, core characteristics of visible optical glass material such as refractive index, dispersion value, transmittance, coefficient of thermal expansion, and striae were reviewed from the viewpoint of improving the performance of optical lenses. In this study, the correlation between the refractive index and dispersion value of the optical glass material and the performance of optical lens module is explained by minimizing the chromatic aberration of various wavelength. In addition, we reviewed the refractive index distribution of global leading group's optical glass, which is the most widely used in optical lens manufacturing, and the current status of optical glass technology development at KOPTI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Perspectives on the development of advanced lithium metal anode Short Review of Flash Sintering: Mechanisms, Microstructures, and Mechanical Properties Research Trends on the Influence of Oxygen Vacancies in Post BaTiO3 (BT) Ceramics for Next-Generation MLCCs Resent Progress of LiNi1-x-yCoxMnyO2 for Lithium-ion batteries Recent progress in all-solid-state Li-ion battery anodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1