小型热带鱼的鱼类通道发展:实地案例研究导致技术改进

IF 4.6 Q2 ENVIRONMENTAL SCIENCES Journal of ecohydraulics Pub Date : 2019-01-02 DOI:10.1080/24705357.2019.1646616
T. Marsden, I. Stuart
{"title":"小型热带鱼的鱼类通道发展:实地案例研究导致技术改进","authors":"T. Marsden, I. Stuart","doi":"10.1080/24705357.2019.1646616","DOIUrl":null,"url":null,"abstract":"Abstract In tropical coastal lowland rivers, there are frequently biodiverse upstream migrations of post-larval and juvenile diadromous fish from estuaries into freshwater. Tidal barriers completely block major migratory pathways for these fish and have contributed to major losses of freshwater biodiversity. In northern Australia, early efforts to improve tropical river fish passage with salmonid-style fishways completely failed. Since the mid-1990s, low gradient vertical-slot and rock fishways improved fish passage but the smallest and most abundant fish (i.e. from 10 to 100 mm long) often still failed to ascend. Since the mid-2000s, there was a paradigm shift in hydraulic design criteria for new fishways, with a renewed focus on: (i) low turbulence, (ii) maximized roughness and hydraulic boundary layers to optimise fish ascent. We used a combined methodology, firstly developing a conceptual model of fish movement to inform fishway design criteria, secondly tabulating past and present fishway design criteria, and thirdly conducting a series of brief field case-studies, at tidal barriers in tropical rivers for new technical and rock fishways. Our objective was to evaluate the success of these new designs for passage of very small (from 9 mm long) diadromous fish on low head barriers (i.e. <3 m high). We conclude that while there have been improvements in passage of small-bodied fish at tidal barriers further experimental work is still needed to test and refine current ecohydraulic fishway design criteria.","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2019-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Fish passage developments for small-bodied tropical fish: field case-studies lead to technology improvements\",\"authors\":\"T. Marsden, I. Stuart\",\"doi\":\"10.1080/24705357.2019.1646616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In tropical coastal lowland rivers, there are frequently biodiverse upstream migrations of post-larval and juvenile diadromous fish from estuaries into freshwater. Tidal barriers completely block major migratory pathways for these fish and have contributed to major losses of freshwater biodiversity. In northern Australia, early efforts to improve tropical river fish passage with salmonid-style fishways completely failed. Since the mid-1990s, low gradient vertical-slot and rock fishways improved fish passage but the smallest and most abundant fish (i.e. from 10 to 100 mm long) often still failed to ascend. Since the mid-2000s, there was a paradigm shift in hydraulic design criteria for new fishways, with a renewed focus on: (i) low turbulence, (ii) maximized roughness and hydraulic boundary layers to optimise fish ascent. We used a combined methodology, firstly developing a conceptual model of fish movement to inform fishway design criteria, secondly tabulating past and present fishway design criteria, and thirdly conducting a series of brief field case-studies, at tidal barriers in tropical rivers for new technical and rock fishways. Our objective was to evaluate the success of these new designs for passage of very small (from 9 mm long) diadromous fish on low head barriers (i.e. <3 m high). We conclude that while there have been improvements in passage of small-bodied fish at tidal barriers further experimental work is still needed to test and refine current ecohydraulic fishway design criteria.\",\"PeriodicalId\":93201,\"journal\":{\"name\":\"Journal of ecohydraulics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2019-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of ecohydraulics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24705357.2019.1646616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ecohydraulics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24705357.2019.1646616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 11

摘要

摘要在热带沿海低地河流中,经常存在着从河口向淡水洄游的生物多样性。潮汐屏障完全阻断了这些鱼类的主要迁徙路径,并导致淡水生物多样性的重大损失。在澳大利亚北部,早期用鲑鱼式鱼道改善热带河流鱼类通道的努力完全失败了。自20世纪90年代中期以来,低梯度垂直槽和岩石鱼道改善了鱼类通道,但最小和最丰富的鱼类(即10至100毫米长)仍然无法上升。自2000年代中期以来,新鱼道的水力设计标准发生了范式转变,重新关注:(1)低湍流;(2)最大化粗糙度和水力边界层,以优化鱼类上升。我们使用了一种综合的方法,首先开发了一个鱼类运动的概念模型来为鱼道设计标准提供信息,其次将过去和现在的鱼道设计标准制成表格,第三进行了一系列简短的实地案例研究,在热带河流的潮汐屏障处进行新的技术和岩石鱼道。我们的目标是评估这些新设计在低头屏障(即<3米高)上通过非常小(从9毫米长起)的二重体鱼的成功。我们得出的结论是,虽然在潮汐屏障处小型鱼类的通过方面已经有所改善,但仍需要进一步的实验工作来测试和完善当前的生态水力鱼道设计标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fish passage developments for small-bodied tropical fish: field case-studies lead to technology improvements
Abstract In tropical coastal lowland rivers, there are frequently biodiverse upstream migrations of post-larval and juvenile diadromous fish from estuaries into freshwater. Tidal barriers completely block major migratory pathways for these fish and have contributed to major losses of freshwater biodiversity. In northern Australia, early efforts to improve tropical river fish passage with salmonid-style fishways completely failed. Since the mid-1990s, low gradient vertical-slot and rock fishways improved fish passage but the smallest and most abundant fish (i.e. from 10 to 100 mm long) often still failed to ascend. Since the mid-2000s, there was a paradigm shift in hydraulic design criteria for new fishways, with a renewed focus on: (i) low turbulence, (ii) maximized roughness and hydraulic boundary layers to optimise fish ascent. We used a combined methodology, firstly developing a conceptual model of fish movement to inform fishway design criteria, secondly tabulating past and present fishway design criteria, and thirdly conducting a series of brief field case-studies, at tidal barriers in tropical rivers for new technical and rock fishways. Our objective was to evaluate the success of these new designs for passage of very small (from 9 mm long) diadromous fish on low head barriers (i.e. <3 m high). We conclude that while there have been improvements in passage of small-bodied fish at tidal barriers further experimental work is still needed to test and refine current ecohydraulic fishway design criteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
期刊最新文献
Fish in the fast lane: the stressful consequences of speeding through a flume Evaluating hydrodynamics and implications to sediment transport for tidal restoration at Swan Cove Pool, Virginia Potential for juvenile freshwater mussels to settle onto riverbeds from field investigation The influence of channel morphology and hydraulic complexity on larval pallid sturgeon ( Scaphirhynchus albus ) drift and dispersal dynamics in the Fort Peck Segment, Upper Missouri River: insights from particle tracking simulations Limiting downstream dispersal of invasive carp egg surrogates using a laboratory-scale oblique bubble screen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1