基于图像抠图拉普拉斯的HDR压缩

Ching-Chun Huang, Ismail, Ming-Xun Cai, H. T. Vu
{"title":"基于图像抠图拉普拉斯的HDR压缩","authors":"Ching-Chun Huang, Ismail, Ming-Xun Cai, H. T. Vu","doi":"10.1109/ICCE-TW.2016.7520957","DOIUrl":null,"url":null,"abstract":"By fusing a sequence of exposure images, we could generate a high dynamic range (HDR) image and enhance the image details. However, to display the HDR image on a low dynamic range (LDR) device, HDR compression is necessary. In the paper, a new method for HDR Compression based on matting Laplacian is proposed. The major assumption behind is that the tone-mapped LDR image must preserve the HDR local structure so that the image details could be well represented. Precisely, we treat the HDR image as a guidance image and embed the object structure of the HDR image into a matting Laplacian matrix. Further, we formulate HDR compression as an optimization problem. Through incorporating the matting Laplacian matrix into the objective function, the optimal LDR image is forced to have the similar local structures like the HDR image. Our experiments show the extracted LDR image could enhance the image details well without introducing severe edge effects or color artifacts.","PeriodicalId":6620,"journal":{"name":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","volume":"13 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"HDR compression based on image matting Laplacian\",\"authors\":\"Ching-Chun Huang, Ismail, Ming-Xun Cai, H. T. Vu\",\"doi\":\"10.1109/ICCE-TW.2016.7520957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By fusing a sequence of exposure images, we could generate a high dynamic range (HDR) image and enhance the image details. However, to display the HDR image on a low dynamic range (LDR) device, HDR compression is necessary. In the paper, a new method for HDR Compression based on matting Laplacian is proposed. The major assumption behind is that the tone-mapped LDR image must preserve the HDR local structure so that the image details could be well represented. Precisely, we treat the HDR image as a guidance image and embed the object structure of the HDR image into a matting Laplacian matrix. Further, we formulate HDR compression as an optimization problem. Through incorporating the matting Laplacian matrix into the objective function, the optimal LDR image is forced to have the similar local structures like the HDR image. Our experiments show the extracted LDR image could enhance the image details well without introducing severe edge effects or color artifacts.\",\"PeriodicalId\":6620,\"journal\":{\"name\":\"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)\",\"volume\":\"13 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-TW.2016.7520957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW.2016.7520957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

通过融合一系列曝光图像,我们可以生成高动态范围(HDR)图像并增强图像细节。然而,为了在低动态范围(LDR)设备上显示HDR图像,HDR压缩是必要的。本文提出了一种基于消光拉普拉斯算子的HDR压缩新方法。背后的主要假设是色调映射的LDR图像必须保留HDR局部结构,以便图像细节可以很好地表示。准确地说,我们将HDR图像作为引导图像,并将HDR图像的对象结构嵌入到一个消光拉普拉斯矩阵中。进一步,我们将HDR压缩表述为一个优化问题。通过在目标函数中加入消光拉普拉斯矩阵,使最优LDR图像具有与HDR图像相似的局部结构。我们的实验表明,提取的LDR图像可以很好地增强图像细节,而不会引入严重的边缘效应或彩色伪影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HDR compression based on image matting Laplacian
By fusing a sequence of exposure images, we could generate a high dynamic range (HDR) image and enhance the image details. However, to display the HDR image on a low dynamic range (LDR) device, HDR compression is necessary. In the paper, a new method for HDR Compression based on matting Laplacian is proposed. The major assumption behind is that the tone-mapped LDR image must preserve the HDR local structure so that the image details could be well represented. Precisely, we treat the HDR image as a guidance image and embed the object structure of the HDR image into a matting Laplacian matrix. Further, we formulate HDR compression as an optimization problem. Through incorporating the matting Laplacian matrix into the objective function, the optimal LDR image is forced to have the similar local structures like the HDR image. Our experiments show the extracted LDR image could enhance the image details well without introducing severe edge effects or color artifacts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microorganism Image Counting Based on Multi-threshold Optimization An immersive VR experience mode design Methods and apparatuses for drying electronic devices Topology constructing and restructuring mechanisms for Bluetooth radio networks Coordinate system for elliptic curve cryptosystem on twisted Edwards curve
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1