{"title":"节能动态步行步态的迭代学习","authors":"Felix H. Kong, I. Manchester","doi":"10.1109/IROS.2018.8593548","DOIUrl":null,"url":null,"abstract":"Dynamic walking robots have the potential for efficient and lifelike locomotion, but computing efficient gaits and tracking them is difficult in the presence of under-modeling. Iterative Learning Control (ILC) is a method to learn the control signal to track a periodic reference over several attempts, augmenting a model with online data. Terminal ILC (TILC), a variant of ILC, allows other performance objectives to be addressed at the cost of ignoring parts of the reference. However, dynamic walking robot gaits are not necessarily periodic in time. In this paper, we adapt TILC to jointly optimize final foot placement and energy efficiency on dynamic walking robots by indexing by a phase variable instead of time, yielding “phase-indexed TILC” (θ - TILC). When implemented on a five-link walker in simulation, θ- TILC learns a more energy-efficient walking motion compared to traditional time-indexed TILC.","PeriodicalId":6640,"journal":{"name":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"10 1","pages":"3815-3820"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iterative Learning of Energy-Efficient Dynamic Walking Gaits\",\"authors\":\"Felix H. Kong, I. Manchester\",\"doi\":\"10.1109/IROS.2018.8593548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic walking robots have the potential for efficient and lifelike locomotion, but computing efficient gaits and tracking them is difficult in the presence of under-modeling. Iterative Learning Control (ILC) is a method to learn the control signal to track a periodic reference over several attempts, augmenting a model with online data. Terminal ILC (TILC), a variant of ILC, allows other performance objectives to be addressed at the cost of ignoring parts of the reference. However, dynamic walking robot gaits are not necessarily periodic in time. In this paper, we adapt TILC to jointly optimize final foot placement and energy efficiency on dynamic walking robots by indexing by a phase variable instead of time, yielding “phase-indexed TILC” (θ - TILC). When implemented on a five-link walker in simulation, θ- TILC learns a more energy-efficient walking motion compared to traditional time-indexed TILC.\",\"PeriodicalId\":6640,\"journal\":{\"name\":\"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"10 1\",\"pages\":\"3815-3820\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2018.8593548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2018.8593548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Iterative Learning of Energy-Efficient Dynamic Walking Gaits
Dynamic walking robots have the potential for efficient and lifelike locomotion, but computing efficient gaits and tracking them is difficult in the presence of under-modeling. Iterative Learning Control (ILC) is a method to learn the control signal to track a periodic reference over several attempts, augmenting a model with online data. Terminal ILC (TILC), a variant of ILC, allows other performance objectives to be addressed at the cost of ignoring parts of the reference. However, dynamic walking robot gaits are not necessarily periodic in time. In this paper, we adapt TILC to jointly optimize final foot placement and energy efficiency on dynamic walking robots by indexing by a phase variable instead of time, yielding “phase-indexed TILC” (θ - TILC). When implemented on a five-link walker in simulation, θ- TILC learns a more energy-efficient walking motion compared to traditional time-indexed TILC.