节能动态步行步态的迭代学习

Felix H. Kong, I. Manchester
{"title":"节能动态步行步态的迭代学习","authors":"Felix H. Kong, I. Manchester","doi":"10.1109/IROS.2018.8593548","DOIUrl":null,"url":null,"abstract":"Dynamic walking robots have the potential for efficient and lifelike locomotion, but computing efficient gaits and tracking them is difficult in the presence of under-modeling. Iterative Learning Control (ILC) is a method to learn the control signal to track a periodic reference over several attempts, augmenting a model with online data. Terminal ILC (TILC), a variant of ILC, allows other performance objectives to be addressed at the cost of ignoring parts of the reference. However, dynamic walking robot gaits are not necessarily periodic in time. In this paper, we adapt TILC to jointly optimize final foot placement and energy efficiency on dynamic walking robots by indexing by a phase variable instead of time, yielding “phase-indexed TILC” (θ - TILC). When implemented on a five-link walker in simulation, θ- TILC learns a more energy-efficient walking motion compared to traditional time-indexed TILC.","PeriodicalId":6640,"journal":{"name":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"10 1","pages":"3815-3820"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iterative Learning of Energy-Efficient Dynamic Walking Gaits\",\"authors\":\"Felix H. Kong, I. Manchester\",\"doi\":\"10.1109/IROS.2018.8593548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic walking robots have the potential for efficient and lifelike locomotion, but computing efficient gaits and tracking them is difficult in the presence of under-modeling. Iterative Learning Control (ILC) is a method to learn the control signal to track a periodic reference over several attempts, augmenting a model with online data. Terminal ILC (TILC), a variant of ILC, allows other performance objectives to be addressed at the cost of ignoring parts of the reference. However, dynamic walking robot gaits are not necessarily periodic in time. In this paper, we adapt TILC to jointly optimize final foot placement and energy efficiency on dynamic walking robots by indexing by a phase variable instead of time, yielding “phase-indexed TILC” (θ - TILC). When implemented on a five-link walker in simulation, θ- TILC learns a more energy-efficient walking motion compared to traditional time-indexed TILC.\",\"PeriodicalId\":6640,\"journal\":{\"name\":\"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"10 1\",\"pages\":\"3815-3820\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2018.8593548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2018.8593548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动态步行机器人具有高效逼真运动的潜力,但在建模不足的情况下,计算有效步态并跟踪它们是困难的。迭代学习控制(ILC)是一种通过多次尝试学习控制信号来跟踪周期性参考点的方法,通过在线数据对模型进行扩充。终端ILC (TILC)是ILC的一种变体,允许以忽略参考部分的代价来解决其他性能目标。然而,动态步行机器人的步态在时间上并不一定具有周期性。在本文中,我们采用相位变量代替时间索引TILC来共同优化动态步行机器人的最终足部位置和能量效率,得到“相位索引TILC”(θ - TILC)。在五连杆步行机器人仿真中,θ- TILC比传统的时间索引TILC学习出更节能的步行动作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Iterative Learning of Energy-Efficient Dynamic Walking Gaits
Dynamic walking robots have the potential for efficient and lifelike locomotion, but computing efficient gaits and tracking them is difficult in the presence of under-modeling. Iterative Learning Control (ILC) is a method to learn the control signal to track a periodic reference over several attempts, augmenting a model with online data. Terminal ILC (TILC), a variant of ILC, allows other performance objectives to be addressed at the cost of ignoring parts of the reference. However, dynamic walking robot gaits are not necessarily periodic in time. In this paper, we adapt TILC to jointly optimize final foot placement and energy efficiency on dynamic walking robots by indexing by a phase variable instead of time, yielding “phase-indexed TILC” (θ - TILC). When implemented on a five-link walker in simulation, θ- TILC learns a more energy-efficient walking motion compared to traditional time-indexed TILC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On-Chip Virtual Vortex Gear and Its Application Classification of Hanging Garments Using Learned Features Extracted from 3D Point Clouds Deep Sequential Models for Sampling-Based Planning An Adjustable Force Sensitive Sensor with an Electromagnet for a Soft, Distributed, Digital 3-axis Skin Sensor Sliding-Layer Laminates: A Robotic Material Enabling Robust and Adaptable Undulatory Locomotion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1