两全其美:在不增加空间复杂性的情况下优先考虑网络编码

R. Naumann, S. Dietzel, B. Scheuermann
{"title":"两全其美:在不增加空间复杂性的情况下优先考虑网络编码","authors":"R. Naumann, S. Dietzel, B. Scheuermann","doi":"10.1109/LCN.2016.123","DOIUrl":null,"url":null,"abstract":"Random linear network coding simplifies routing decisions, improves throughput, and increases tolerance against packet loss. A substantial limitation, however, is delay: decoding requires as many independent linear combinations as data blocks. Hierarchical network coding purportedly solves this delay problem. It introduces layers to decode prioritized data blocks early, which may benefit video streaming applications or applications for sensor information collection. While hierarchical network coding reduces decoding delays, it introduces significant space complexity and additional decoding time. We propose a decoding algorithm that manages all prioritization layers in a joint decoder matrix. Analytical evaluation and performance measurements show that we maintain prioritization benefits without increased space complexity and improve decoding performance. With memory requirements independent of the number of layers, our algorithm facilitates more fine-grained prioritization layers to further the benefits of hierarchical network coding.","PeriodicalId":6864,"journal":{"name":"2016 IEEE 41st Conference on Local Computer Networks (LCN)","volume":"10 1","pages":"723-731"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Best of Both Worlds: Prioritizing Network Coding without Increased Space Complexity\",\"authors\":\"R. Naumann, S. Dietzel, B. Scheuermann\",\"doi\":\"10.1109/LCN.2016.123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Random linear network coding simplifies routing decisions, improves throughput, and increases tolerance against packet loss. A substantial limitation, however, is delay: decoding requires as many independent linear combinations as data blocks. Hierarchical network coding purportedly solves this delay problem. It introduces layers to decode prioritized data blocks early, which may benefit video streaming applications or applications for sensor information collection. While hierarchical network coding reduces decoding delays, it introduces significant space complexity and additional decoding time. We propose a decoding algorithm that manages all prioritization layers in a joint decoder matrix. Analytical evaluation and performance measurements show that we maintain prioritization benefits without increased space complexity and improve decoding performance. With memory requirements independent of the number of layers, our algorithm facilitates more fine-grained prioritization layers to further the benefits of hierarchical network coding.\",\"PeriodicalId\":6864,\"journal\":{\"name\":\"2016 IEEE 41st Conference on Local Computer Networks (LCN)\",\"volume\":\"10 1\",\"pages\":\"723-731\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 41st Conference on Local Computer Networks (LCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LCN.2016.123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 41st Conference on Local Computer Networks (LCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN.2016.123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随机线性网络编码简化了路由决策,提高了吞吐量,并增加了对数据包丢失的容忍度。然而,一个实质性的限制是延迟:解码需要与数据块一样多的独立线性组合。分层网络编码据称解决了这一延迟问题。它引入了早期解码优先数据块的层,这可能有利于视频流应用或传感器信息收集应用。虽然分层网络编码减少了解码延迟,但它引入了显著的空间复杂性和额外的解码时间。我们提出了一种在联合解码器矩阵中管理所有优先级层的解码算法。分析评估和性能测量表明,我们在不增加空间复杂性的情况下保持了优先级优势,并提高了解码性能。由于内存需求与层数无关,我们的算法促进了更细粒度的优先级层,以进一步发挥分层网络编码的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Best of Both Worlds: Prioritizing Network Coding without Increased Space Complexity
Random linear network coding simplifies routing decisions, improves throughput, and increases tolerance against packet loss. A substantial limitation, however, is delay: decoding requires as many independent linear combinations as data blocks. Hierarchical network coding purportedly solves this delay problem. It introduces layers to decode prioritized data blocks early, which may benefit video streaming applications or applications for sensor information collection. While hierarchical network coding reduces decoding delays, it introduces significant space complexity and additional decoding time. We propose a decoding algorithm that manages all prioritization layers in a joint decoder matrix. Analytical evaluation and performance measurements show that we maintain prioritization benefits without increased space complexity and improve decoding performance. With memory requirements independent of the number of layers, our algorithm facilitates more fine-grained prioritization layers to further the benefits of hierarchical network coding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message from the General Chair Message from the general chair Best of Both Worlds: Prioritizing Network Coding without Increased Space Complexity Controlling Network Latency in Mixed Hadoop Clusters: Do We Need Active Queue Management? TransFetch: A Viewing Behavior Driven Video Distribution Framework in Public Transport
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1