序列子串约束下最长公共子序列问题的粗粒度多机并行算法

IF 2 4区 计算机科学 Q2 COMPUTER SCIENCE, THEORY & METHODS Parallel Computing Pub Date : 2022-07-01 DOI:10.1016/j.parco.2022.102927
Vianney Kengne Tchendji , Hermann Bogning Tepiele , Mathias Akong Onabid , Jean Frédéric Myoupo , Jerry Lacmou Zeutouo
{"title":"序列子串约束下最长公共子序列问题的粗粒度多机并行算法","authors":"Vianney Kengne Tchendji ,&nbsp;Hermann Bogning Tepiele ,&nbsp;Mathias Akong Onabid ,&nbsp;Jean Frédéric Myoupo ,&nbsp;Jerry Lacmou Zeutouo","doi":"10.1016/j.parco.2022.102927","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the sequential substring constrained longest common subsequence (SSCLCS) problem. It is widely used in the bioinformatics field. Given two strings <span><math><mi>X</mi></math></span> and <span><math><mi>Y</mi></math></span> with respective lengths <span><math><mi>m</mi></math></span> and <span><math><mi>n</mi></math></span>, formed on an alphabet <span><math><mi>Σ</mi></math></span> and a constraint sequence <span><math><mi>C</mi></math></span> formed by ordered strings <span><math><mrow><mo>(</mo><msup><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>,</mo><msup><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mo>…</mo><mo>,</mo><msup><mrow><mi>c</mi></mrow><mrow><mi>l</mi></mrow></msup><mo>)</mo></mrow></math></span> with total length <span><math><mi>r</mi></math></span>, the SSCLCS problem is to find the longest common subsequence <span><math><mi>D</mi></math></span> between <span><math><mi>X</mi></math></span> and <span><math><mi>Y</mi></math></span> such that <span><math><mi>D</mi></math></span> contains in an ordered way <span><math><mrow><msup><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>,</mo><msup><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mo>…</mo><mo>,</mo><msup><mrow><mi>c</mi></mrow><mrow><mi>l</mi></mrow></msup></mrow></math></span>. To solve this problem, Tseng et al. proposed a dynamic-programming algorithm that runs in <span><math><mrow><mi>O</mi><mfenced><mrow><mi>m</mi><mi>n</mi><mi>r</mi><mo>+</mo><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mi>n</mi><mo>)</mo></mrow><mo>|</mo><mi>Σ</mi><mo>|</mo></mrow></mfenced></mrow></math></span><span><span> time. We rely on this work to propose a parallel algorithm for the SSCLCS problem on the Coarse-Grained </span>Multicomputer<span><span> (CGM) model. We design a three-dimensional partitioning technique of the corresponding dependency graph to reduce the latency time of processors by ensuring that at each step, the size of the </span>subproblems to be performed by processors is small. It also minimizes the number of communications between processors. Our solution requires </span></span><span><math><mrow><mi>O</mi><mfenced><mrow><mfrac><mrow><mi>n</mi><mi>m</mi><mi>r</mi><mo>+</mo><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mi>n</mi><mo>)</mo></mrow><mo>|</mo><mi>Σ</mi><mo>|</mo></mrow><mrow><mi>p</mi></mrow></mfrac></mrow></mfenced></mrow></math></span> execution time with <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></mrow></math></span> communication rounds on <span><math><mi>p</mi></math></span> processors. The experimental results show that our solution speedups up to 59.7 on 64 processors. This is better than the CGM-based parallel techniques that have been used in solving similar problems.</p></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"111 ","pages":"Article 102927"},"PeriodicalIF":2.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A coarse-grained multicomputer parallel algorithm for the sequential substring constrained longest common subsequence problem\",\"authors\":\"Vianney Kengne Tchendji ,&nbsp;Hermann Bogning Tepiele ,&nbsp;Mathias Akong Onabid ,&nbsp;Jean Frédéric Myoupo ,&nbsp;Jerry Lacmou Zeutouo\",\"doi\":\"10.1016/j.parco.2022.102927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the sequential substring constrained longest common subsequence (SSCLCS) problem. It is widely used in the bioinformatics field. Given two strings <span><math><mi>X</mi></math></span> and <span><math><mi>Y</mi></math></span> with respective lengths <span><math><mi>m</mi></math></span> and <span><math><mi>n</mi></math></span>, formed on an alphabet <span><math><mi>Σ</mi></math></span> and a constraint sequence <span><math><mi>C</mi></math></span> formed by ordered strings <span><math><mrow><mo>(</mo><msup><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>,</mo><msup><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mo>…</mo><mo>,</mo><msup><mrow><mi>c</mi></mrow><mrow><mi>l</mi></mrow></msup><mo>)</mo></mrow></math></span> with total length <span><math><mi>r</mi></math></span>, the SSCLCS problem is to find the longest common subsequence <span><math><mi>D</mi></math></span> between <span><math><mi>X</mi></math></span> and <span><math><mi>Y</mi></math></span> such that <span><math><mi>D</mi></math></span> contains in an ordered way <span><math><mrow><msup><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>,</mo><msup><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mo>…</mo><mo>,</mo><msup><mrow><mi>c</mi></mrow><mrow><mi>l</mi></mrow></msup></mrow></math></span>. To solve this problem, Tseng et al. proposed a dynamic-programming algorithm that runs in <span><math><mrow><mi>O</mi><mfenced><mrow><mi>m</mi><mi>n</mi><mi>r</mi><mo>+</mo><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mi>n</mi><mo>)</mo></mrow><mo>|</mo><mi>Σ</mi><mo>|</mo></mrow></mfenced></mrow></math></span><span><span> time. We rely on this work to propose a parallel algorithm for the SSCLCS problem on the Coarse-Grained </span>Multicomputer<span><span> (CGM) model. We design a three-dimensional partitioning technique of the corresponding dependency graph to reduce the latency time of processors by ensuring that at each step, the size of the </span>subproblems to be performed by processors is small. It also minimizes the number of communications between processors. Our solution requires </span></span><span><math><mrow><mi>O</mi><mfenced><mrow><mfrac><mrow><mi>n</mi><mi>m</mi><mi>r</mi><mo>+</mo><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mi>n</mi><mo>)</mo></mrow><mo>|</mo><mi>Σ</mi><mo>|</mo></mrow><mrow><mi>p</mi></mrow></mfrac></mrow></mfenced></mrow></math></span> execution time with <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></mrow></math></span> communication rounds on <span><math><mi>p</mi></math></span> processors. The experimental results show that our solution speedups up to 59.7 on 64 processors. This is better than the CGM-based parallel techniques that have been used in solving similar problems.</p></div>\",\"PeriodicalId\":54642,\"journal\":{\"name\":\"Parallel Computing\",\"volume\":\"111 \",\"pages\":\"Article 102927\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016781912200028X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016781912200028X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了序列子串约束的最长公共子序列问题。在生物信息学领域有着广泛的应用。给定两个字符串X和Y,长度分别为m和n,构成字母Σ和一个约束序列C,由总长度为r的有序字符串(c1,c2,…,cl)构成,SSCLCS问题是求X和Y之间的最长公共子序列D,使D以有序方式包含c1,c2,…,cl。为了解决这一问题,Tseng等人提出了一种运行在Omnr+(m+n)|Σ|时间内的动态规划算法。在此基础上,我们提出了一种基于粗粒度多计算机(CGM)模型的SSCLCS问题并行算法。我们设计了相应依赖图的三维划分技术,通过保证处理器在每一步执行的子问题的大小较小来减少处理器的延迟时间。它还减少了处理器之间的通信数量。我们的解决方案需要Onmr+(m+n)|Σ|p执行时间,在p个处理器上进行O(p)轮通信。实验结果表明,我们的解决方案在64个处理器上的加速高达59.7。这比用于解决类似问题的基于cgm的并行技术要好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A coarse-grained multicomputer parallel algorithm for the sequential substring constrained longest common subsequence problem

In this paper, we study the sequential substring constrained longest common subsequence (SSCLCS) problem. It is widely used in the bioinformatics field. Given two strings X and Y with respective lengths m and n, formed on an alphabet Σ and a constraint sequence C formed by ordered strings (c1,c2,,cl) with total length r, the SSCLCS problem is to find the longest common subsequence D between X and Y such that D contains in an ordered way c1,c2,,cl. To solve this problem, Tseng et al. proposed a dynamic-programming algorithm that runs in Omnr+(m+n)|Σ| time. We rely on this work to propose a parallel algorithm for the SSCLCS problem on the Coarse-Grained Multicomputer (CGM) model. We design a three-dimensional partitioning technique of the corresponding dependency graph to reduce the latency time of processors by ensuring that at each step, the size of the subproblems to be performed by processors is small. It also minimizes the number of communications between processors. Our solution requires Onmr+(m+n)|Σ|p execution time with O(p) communication rounds on p processors. The experimental results show that our solution speedups up to 59.7 on 64 processors. This is better than the CGM-based parallel techniques that have been used in solving similar problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Parallel Computing
Parallel Computing 工程技术-计算机:理论方法
CiteScore
3.50
自引率
7.10%
发文量
49
审稿时长
4.5 months
期刊介绍: Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems. Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results. Particular technical areas of interest include, but are not limited to: -System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing). -Enabling software including debuggers, performance tools, and system and numeric libraries. -General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems -Software engineering and productivity as it relates to parallel computing -Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism -Performance measurement results on state-of-the-art systems -Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures. -Parallel I/O systems both hardware and software -Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications
期刊最新文献
Towards resilient and energy efficient scalable Krylov solvers Seesaw: A 4096-bit vector processor for accelerating Kyber based on RISC-V ISA extensions Editorial Board FastPTM: Fast weights loading of pre-trained models for parallel inference service provisioning Distributed consensus-based estimation of the leading eigenvalue of a non-negative irreducible matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1