{"title":"因果关系与决策:戴维的“统计因果关系的决策理论基础”","authors":"J. Pearl","doi":"10.1515/jci-2022-0046","DOIUrl":null,"url":null,"abstract":"Abstract In a recent issue of this journal, Philip Dawid (2021) proposes a framework for causal inference that is based on statistical decision theory and that is, in many aspects, compatible with the familiar framework of causal graphs (e.g., Directed Acyclic Graphs (DAGs)). This editorial compares the methodological features of the two frameworks as well as their epistemological basis.","PeriodicalId":48576,"journal":{"name":"Journal of Causal Inference","volume":"20 1","pages":"221 - 226"},"PeriodicalIF":1.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Causation and decision: On Dawid’s “Decision theoretic foundation of statistical causality”\",\"authors\":\"J. Pearl\",\"doi\":\"10.1515/jci-2022-0046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In a recent issue of this journal, Philip Dawid (2021) proposes a framework for causal inference that is based on statistical decision theory and that is, in many aspects, compatible with the familiar framework of causal graphs (e.g., Directed Acyclic Graphs (DAGs)). This editorial compares the methodological features of the two frameworks as well as their epistemological basis.\",\"PeriodicalId\":48576,\"journal\":{\"name\":\"Journal of Causal Inference\",\"volume\":\"20 1\",\"pages\":\"221 - 226\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Causal Inference\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1515/jci-2022-0046\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Causal Inference","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/jci-2022-0046","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Causation and decision: On Dawid’s “Decision theoretic foundation of statistical causality”
Abstract In a recent issue of this journal, Philip Dawid (2021) proposes a framework for causal inference that is based on statistical decision theory and that is, in many aspects, compatible with the familiar framework of causal graphs (e.g., Directed Acyclic Graphs (DAGs)). This editorial compares the methodological features of the two frameworks as well as their epistemological basis.
期刊介绍:
Journal of Causal Inference (JCI) publishes papers on theoretical and applied causal research across the range of academic disciplines that use quantitative tools to study causality.