{"title":"性质B的定量Lovász标准","authors":"Asaf Ferber, A. Shapira","doi":"10.1017/S0963548320000334","DOIUrl":null,"url":null,"abstract":"Abstract A well-known observation of Lovász is that if a hypergraph is not 2-colourable, then at least one pair of its edges intersect at a single vertex. In this short paper we consider the quantitative version of Lovász’s criterion. That is, we ask how many pairs of edges intersecting at a single vertex should belong to a non-2-colourable n-uniform hypergraph. Our main result is an exact answer to this question, which further characterizes all the extremal hypergraphs. The proof combines Bollobás’s two families theorem with Pluhar’s randomized colouring algorithm.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A quantitative Lovász criterion for Property B\",\"authors\":\"Asaf Ferber, A. Shapira\",\"doi\":\"10.1017/S0963548320000334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A well-known observation of Lovász is that if a hypergraph is not 2-colourable, then at least one pair of its edges intersect at a single vertex. In this short paper we consider the quantitative version of Lovász’s criterion. That is, we ask how many pairs of edges intersecting at a single vertex should belong to a non-2-colourable n-uniform hypergraph. Our main result is an exact answer to this question, which further characterizes all the extremal hypergraphs. The proof combines Bollobás’s two families theorem with Pluhar’s randomized colouring algorithm.\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S0963548320000334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0963548320000334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract A well-known observation of Lovász is that if a hypergraph is not 2-colourable, then at least one pair of its edges intersect at a single vertex. In this short paper we consider the quantitative version of Lovász’s criterion. That is, we ask how many pairs of edges intersecting at a single vertex should belong to a non-2-colourable n-uniform hypergraph. Our main result is an exact answer to this question, which further characterizes all the extremal hypergraphs. The proof combines Bollobás’s two families theorem with Pluhar’s randomized colouring algorithm.