基于卷积神经网络的开心果分类

{"title":"基于卷积神经网络的开心果分类","authors":"","doi":"10.25139/inform.v8i1.5685","DOIUrl":null,"url":null,"abstract":"The application of innovative technologies in the agricultural industry has the potential to boost yield productivity and affect the well-being of farmers. Pistachio nuts are widely considered among the most precious things agriculture produces. The kirmizi and sirt are the two distinct varieties of pistachio nuts that are available. It is essential to categorize the different types of pistachio nuts to keep the product's quality and worth at a high level. This paper proposes a classified pistachio variety of kirmizi and siirt based on Convolutional Neural Network (CNN) models Inception V3 and ResNet50. The dataset used in this research is 2148 samples of pistachio images. The sample images are divided into 80% training data, 10% testing data, and 10% validation data. First, we pre-process and normalize by wrapping and cropping the images. The next, Inception-V3 and ResNet50 architectures, were trained and tested on the sample datasets. The experimental results show that the accuracy of both models is 96% and 86%, respectively. This can be concluded that the performance of the CNN model using Inception-V3 architecture outperforms ResNet50 architecture. \n  \n  \n ","PeriodicalId":52760,"journal":{"name":"Inform Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of Pistachio Nut Using Convolutional Neural Network\",\"authors\":\"\",\"doi\":\"10.25139/inform.v8i1.5685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of innovative technologies in the agricultural industry has the potential to boost yield productivity and affect the well-being of farmers. Pistachio nuts are widely considered among the most precious things agriculture produces. The kirmizi and sirt are the two distinct varieties of pistachio nuts that are available. It is essential to categorize the different types of pistachio nuts to keep the product's quality and worth at a high level. This paper proposes a classified pistachio variety of kirmizi and siirt based on Convolutional Neural Network (CNN) models Inception V3 and ResNet50. The dataset used in this research is 2148 samples of pistachio images. The sample images are divided into 80% training data, 10% testing data, and 10% validation data. First, we pre-process and normalize by wrapping and cropping the images. The next, Inception-V3 and ResNet50 architectures, were trained and tested on the sample datasets. The experimental results show that the accuracy of both models is 96% and 86%, respectively. This can be concluded that the performance of the CNN model using Inception-V3 architecture outperforms ResNet50 architecture. \\n  \\n  \\n \",\"PeriodicalId\":52760,\"journal\":{\"name\":\"Inform Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inform Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25139/inform.v8i1.5685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inform Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25139/inform.v8i1.5685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在农业中应用创新技术有可能提高产量生产力并影响农民的福祉。开心果被广泛认为是最珍贵的农产品之一。kirmizi和sirt是两种不同的开心果品种。对不同种类的开心果进行分类是保证产品质量和价值的关键。本文提出了一种基于卷积神经网络(CNN)模型Inception V3和ResNet50的开心果kirmizi和siirt的分类方法。本研究使用的数据集是2148个开心果图像样本。将样本图像分为80%的训练数据、10%的测试数据和10%的验证数据。首先,我们通过包裹和裁剪图像进行预处理和规范化。接下来,Inception-V3和ResNet50架构在样本数据集上进行了训练和测试。实验结果表明,两种模型的准确率分别为96%和86%。由此可以得出结论,使用Inception-V3架构的CNN模型的性能优于ResNet50架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of Pistachio Nut Using Convolutional Neural Network
The application of innovative technologies in the agricultural industry has the potential to boost yield productivity and affect the well-being of farmers. Pistachio nuts are widely considered among the most precious things agriculture produces. The kirmizi and sirt are the two distinct varieties of pistachio nuts that are available. It is essential to categorize the different types of pistachio nuts to keep the product's quality and worth at a high level. This paper proposes a classified pistachio variety of kirmizi and siirt based on Convolutional Neural Network (CNN) models Inception V3 and ResNet50. The dataset used in this research is 2148 samples of pistachio images. The sample images are divided into 80% training data, 10% testing data, and 10% validation data. First, we pre-process and normalize by wrapping and cropping the images. The next, Inception-V3 and ResNet50 architectures, were trained and tested on the sample datasets. The experimental results show that the accuracy of both models is 96% and 86%, respectively. This can be concluded that the performance of the CNN model using Inception-V3 architecture outperforms ResNet50 architecture.      
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
31
审稿时长
10 weeks
期刊最新文献
Blended Learning Vocationalogy Entrepreneurship Program: Analysis of Human-Computer Interaction Based on Technology Acceptance Model (TAM) Sentiment Analysis for IMDb Movie Review Using Support Vector Machine (SVM) Method Estimation of Brake Pad Wear Using Fuzzy Logic in Real Time Website Analysis and Design Using Iconix Process Method: Case Study: Kedai Lengghian Classification of Pistachio Nut Using Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1