{"title":"一种基于知识和变换的混合事件检测模型,具有自动自注意阈值、层和头部选择","authors":"Thierry Desot, Orphée De Clercq, Veronique Hoste","doi":"10.18653/v1/2022.case-1.4","DOIUrl":null,"url":null,"abstract":"Event and argument role detection are frequently conceived as separate tasks. In this work we conceive both processes as one taskin a hybrid event detection approach. Its main component is based on automatic keyword extraction (AKE) using the self-attention mechanism of a BERT transformer model. As a bottleneck for AKE is defining the threshold of the attention values, we propose a novel method for automatic self-attention thresholdselection. It is fueled by core event information, or simply the verb and its arguments as the backbone of an event. These are outputted by a knowledge-based syntactic parser. In a secondstep the event core is enriched with other semantically salient words provided by the transformer model. Furthermore, we propose an automatic self-attention layer and head selectionmechanism, by analyzing which self-attention cells in the BERT transformer contribute most to the hybrid event detection and which linguistic tasks they represent. This approach was integrated in a pipeline event extraction approachand outperforms three state of the art multi-task event extraction methods.","PeriodicalId":80307,"journal":{"name":"The Case manager","volume":"17 1","pages":"21-31"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Hybrid Knowledge and Transformer-Based Model for Event Detection with Automatic Self-Attention Threshold, Layer and Head Selection\",\"authors\":\"Thierry Desot, Orphée De Clercq, Veronique Hoste\",\"doi\":\"10.18653/v1/2022.case-1.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Event and argument role detection are frequently conceived as separate tasks. In this work we conceive both processes as one taskin a hybrid event detection approach. Its main component is based on automatic keyword extraction (AKE) using the self-attention mechanism of a BERT transformer model. As a bottleneck for AKE is defining the threshold of the attention values, we propose a novel method for automatic self-attention thresholdselection. It is fueled by core event information, or simply the verb and its arguments as the backbone of an event. These are outputted by a knowledge-based syntactic parser. In a secondstep the event core is enriched with other semantically salient words provided by the transformer model. Furthermore, we propose an automatic self-attention layer and head selectionmechanism, by analyzing which self-attention cells in the BERT transformer contribute most to the hybrid event detection and which linguistic tasks they represent. This approach was integrated in a pipeline event extraction approachand outperforms three state of the art multi-task event extraction methods.\",\"PeriodicalId\":80307,\"journal\":{\"name\":\"The Case manager\",\"volume\":\"17 1\",\"pages\":\"21-31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Case manager\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.case-1.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Case manager","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.case-1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Hybrid Knowledge and Transformer-Based Model for Event Detection with Automatic Self-Attention Threshold, Layer and Head Selection
Event and argument role detection are frequently conceived as separate tasks. In this work we conceive both processes as one taskin a hybrid event detection approach. Its main component is based on automatic keyword extraction (AKE) using the self-attention mechanism of a BERT transformer model. As a bottleneck for AKE is defining the threshold of the attention values, we propose a novel method for automatic self-attention thresholdselection. It is fueled by core event information, or simply the verb and its arguments as the backbone of an event. These are outputted by a knowledge-based syntactic parser. In a secondstep the event core is enriched with other semantically salient words provided by the transformer model. Furthermore, we propose an automatic self-attention layer and head selectionmechanism, by analyzing which self-attention cells in the BERT transformer contribute most to the hybrid event detection and which linguistic tasks they represent. This approach was integrated in a pipeline event extraction approachand outperforms three state of the art multi-task event extraction methods.