基于块匹配帧的光谱 CT 材料重建。

Weiwen Wu, Qian Wang, Fenglin Liu, Yining Zhu, Hengyong Yu
{"title":"基于块匹配帧的光谱 CT 材料重建。","authors":"Weiwen Wu, Qian Wang, Fenglin Liu, Yining Zhu, Hengyong Yu","doi":"10.1088/1361-6560/ab51db","DOIUrl":null,"url":null,"abstract":"<p><p>Spectral computed tomography (CT) has a great potential in material identification and decomposition. To achieve high-quality material composition images and further suppress the x-ray beam hardening artifacts, we first propose a one-step material reconstruction model based on Taylor's first-order expansion. Then, we develop a basic material reconstruction method named material simultaneous algebraic reconstruction technique (MSART). Considering the local similarity of each material image, we incorporate a powerful block matching frame (BMF) into the material reconstruction (MR) model and generate a BMF based MR (BMFMR) method. Because the BMFMR model contains the L <sub>0</sub>-norm problem, we adopt a split-Bregman method for optimization. The numerical simulation and physical phantom experiment results validate the correctness of the material reconstruction algorithms and demonstrate that the BMF regularization outperforms the total variation and no-local mean regularizations.</p>","PeriodicalId":73793,"journal":{"name":"Journal of infrastructure preservation and resilience","volume":"2 1","pages":"235011"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7376577/pdf/","citationCount":"0","resultStr":"{\"title\":\"Block matching frame based material reconstruction for spectral CT.\",\"authors\":\"Weiwen Wu, Qian Wang, Fenglin Liu, Yining Zhu, Hengyong Yu\",\"doi\":\"10.1088/1361-6560/ab51db\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spectral computed tomography (CT) has a great potential in material identification and decomposition. To achieve high-quality material composition images and further suppress the x-ray beam hardening artifacts, we first propose a one-step material reconstruction model based on Taylor's first-order expansion. Then, we develop a basic material reconstruction method named material simultaneous algebraic reconstruction technique (MSART). Considering the local similarity of each material image, we incorporate a powerful block matching frame (BMF) into the material reconstruction (MR) model and generate a BMF based MR (BMFMR) method. Because the BMFMR model contains the L <sub>0</sub>-norm problem, we adopt a split-Bregman method for optimization. The numerical simulation and physical phantom experiment results validate the correctness of the material reconstruction algorithms and demonstrate that the BMF regularization outperforms the total variation and no-local mean regularizations.</p>\",\"PeriodicalId\":73793,\"journal\":{\"name\":\"Journal of infrastructure preservation and resilience\",\"volume\":\"2 1\",\"pages\":\"235011\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7376577/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of infrastructure preservation and resilience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6560/ab51db\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of infrastructure preservation and resilience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ab51db","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光谱计算机断层扫描(CT)在材料识别和分解方面具有巨大潜力。为了获得高质量的材料成分图像并进一步抑制 X 射线束硬化伪影,我们首先提出了基于泰勒一阶展开的一步材料重建模型。然后,我们开发了一种基本的材料重建方法,命名为材料同步代数重建技术(MSART)。考虑到每个材料图像的局部相似性,我们在材料重建(MR)模型中加入了强大的块匹配框架(BMF),并生成了基于 BMF 的 MR(BMFMR)方法。由于 BMFMR 模型包含 L 0-norm 问题,我们采用了分裂-布雷格曼方法进行优化。数值模拟和物理幻影实验结果验证了材料重建算法的正确性,并证明 BMF 正则化优于总变异正则化和无局均正则化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Block matching frame based material reconstruction for spectral CT.

Spectral computed tomography (CT) has a great potential in material identification and decomposition. To achieve high-quality material composition images and further suppress the x-ray beam hardening artifacts, we first propose a one-step material reconstruction model based on Taylor's first-order expansion. Then, we develop a basic material reconstruction method named material simultaneous algebraic reconstruction technique (MSART). Considering the local similarity of each material image, we incorporate a powerful block matching frame (BMF) into the material reconstruction (MR) model and generate a BMF based MR (BMFMR) method. Because the BMFMR model contains the L 0-norm problem, we adopt a split-Bregman method for optimization. The numerical simulation and physical phantom experiment results validate the correctness of the material reconstruction algorithms and demonstrate that the BMF regularization outperforms the total variation and no-local mean regularizations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Automated crack identification in structures using acoustic waveforms and deep learning Inspection prioritization of gravity sanitary sewer systems using supervised machine learning algorithms Numerical investigation on the deformation of railway embankment under normal faulting Evaluation of the physical characteristics of reinforced concrete subject to corrosion using a poro-elastic acoustic model inversion technique applied to ultrasonic measurements An investigation of belief-free DRL and MCTS for inspection and maintenance planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1