{"title":"解决海上砂岩油田天然气水合物问题的闲置生产","authors":"B. Daramola","doi":"10.2118/200904-ms","DOIUrl":null,"url":null,"abstract":"\n This publication presents how an oil asset unlocked idle production after numerous production upsets and a gas hydrate blockage. It also uses economics to justify facilities enhancement projects for flow assurance. Field F is an offshore oil field with eight subsea wells tied back to a third party FPSO vessel.\n Field F was shut down for turnaround maintenance in 2015. After the field was brought back online, one of the production wells (F5) failed to flow. An evaluation of the reservoir, well, and facilities data suggested that there was a gas hydrate blockage in the subsea pipeline between the well head and the FPSO vessel. A subsea intervention vessel was then hired to execute a pipeline clean-out operation, which removed the gas hydrate, and restored F5 well oil production. To minimise oil production losses due to flow assurance issues, the asset team evaluated the viability of installing a test pipeline and a second methanol umbilical as facilities enhancement projects.\n The pipeline clean-out operation delivered 5400 barrels of oil per day production to the asset. The feasibility study suggested that installing a second methanol umbilical and a test pipeline are economically attractive. It is recommended that the new methanol umbilical is installed to guarantee oil flow from F5 and future infill production wells. The test pipeline can be used to clean up new wells, to induce low pressure wells, and for well testing, well sampling, water salinity evaluation, tracer evaluation, and production optimisation.\n This paper presents production upset diagnosis and remediation steps actioned in a producing oil field, and aids the justification of methanol umbilical capacity upgrade and test pipeline installations as facilities enhancement projects. It also indicates that gas hydrate blockage can be prevented by providing adequate methanol umbilical capacity for timely dosing of oil production wells.","PeriodicalId":11142,"journal":{"name":"Day 3 Wed, June 30, 2021","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking Idle Production in an Offshore Sandstone Oil Field With Gas Hydrate Issues\",\"authors\":\"B. Daramola\",\"doi\":\"10.2118/200904-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This publication presents how an oil asset unlocked idle production after numerous production upsets and a gas hydrate blockage. It also uses economics to justify facilities enhancement projects for flow assurance. Field F is an offshore oil field with eight subsea wells tied back to a third party FPSO vessel.\\n Field F was shut down for turnaround maintenance in 2015. After the field was brought back online, one of the production wells (F5) failed to flow. An evaluation of the reservoir, well, and facilities data suggested that there was a gas hydrate blockage in the subsea pipeline between the well head and the FPSO vessel. A subsea intervention vessel was then hired to execute a pipeline clean-out operation, which removed the gas hydrate, and restored F5 well oil production. To minimise oil production losses due to flow assurance issues, the asset team evaluated the viability of installing a test pipeline and a second methanol umbilical as facilities enhancement projects.\\n The pipeline clean-out operation delivered 5400 barrels of oil per day production to the asset. The feasibility study suggested that installing a second methanol umbilical and a test pipeline are economically attractive. It is recommended that the new methanol umbilical is installed to guarantee oil flow from F5 and future infill production wells. The test pipeline can be used to clean up new wells, to induce low pressure wells, and for well testing, well sampling, water salinity evaluation, tracer evaluation, and production optimisation.\\n This paper presents production upset diagnosis and remediation steps actioned in a producing oil field, and aids the justification of methanol umbilical capacity upgrade and test pipeline installations as facilities enhancement projects. It also indicates that gas hydrate blockage can be prevented by providing adequate methanol umbilical capacity for timely dosing of oil production wells.\",\"PeriodicalId\":11142,\"journal\":{\"name\":\"Day 3 Wed, June 30, 2021\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Wed, June 30, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/200904-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, June 30, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/200904-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unlocking Idle Production in an Offshore Sandstone Oil Field With Gas Hydrate Issues
This publication presents how an oil asset unlocked idle production after numerous production upsets and a gas hydrate blockage. It also uses economics to justify facilities enhancement projects for flow assurance. Field F is an offshore oil field with eight subsea wells tied back to a third party FPSO vessel.
Field F was shut down for turnaround maintenance in 2015. After the field was brought back online, one of the production wells (F5) failed to flow. An evaluation of the reservoir, well, and facilities data suggested that there was a gas hydrate blockage in the subsea pipeline between the well head and the FPSO vessel. A subsea intervention vessel was then hired to execute a pipeline clean-out operation, which removed the gas hydrate, and restored F5 well oil production. To minimise oil production losses due to flow assurance issues, the asset team evaluated the viability of installing a test pipeline and a second methanol umbilical as facilities enhancement projects.
The pipeline clean-out operation delivered 5400 barrels of oil per day production to the asset. The feasibility study suggested that installing a second methanol umbilical and a test pipeline are economically attractive. It is recommended that the new methanol umbilical is installed to guarantee oil flow from F5 and future infill production wells. The test pipeline can be used to clean up new wells, to induce low pressure wells, and for well testing, well sampling, water salinity evaluation, tracer evaluation, and production optimisation.
This paper presents production upset diagnosis and remediation steps actioned in a producing oil field, and aids the justification of methanol umbilical capacity upgrade and test pipeline installations as facilities enhancement projects. It also indicates that gas hydrate blockage can be prevented by providing adequate methanol umbilical capacity for timely dosing of oil production wells.