Matthew W. Scroggs, Jørgen S. Dokken, C. Richardson, G. N. Wells
{"title":"多边形和多面体单元网格上任意阶有限元自由度映射的构造","authors":"Matthew W. Scroggs, Jørgen S. Dokken, C. Richardson, G. N. Wells","doi":"10.1145/3524456","DOIUrl":null,"url":null,"abstract":"We develop a method for generating degree-of-freedom maps for arbitrary order Ciarlet-type finite element spaces for any cell shape. The approach is based on the composition of permutations and transformations by cell sub-entity. Current approaches to generating degree-of-freedom maps for arbitrary order problems typically rely on a consistent orientation of cell entities that permits the definition of a common local coordinate system on shared edges and faces. However, while orientation of a mesh is straightforward for simplex cells and is a local operation, it is not a strictly local operation for quadrilateral cells and, in the case of hexahedral cells, not all meshes are orientable. The permutation and transformation approach is developed for a range of element types, including arbitrary degree Lagrange, serendipity, and divergence- and curl-conforming elements, and for a range of cell shapes. The approach is local and can be applied to cells of any shape, including general polytopes and meshes with mixed cell types. A number of examples are presented and the developed approach has been implemented in open-source libraries.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"32 1","pages":"1 - 23"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"Construction of Arbitrary Order Finite Element Degree-of-Freedom Maps on Polygonal and Polyhedral Cell Meshes\",\"authors\":\"Matthew W. Scroggs, Jørgen S. Dokken, C. Richardson, G. N. Wells\",\"doi\":\"10.1145/3524456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a method for generating degree-of-freedom maps for arbitrary order Ciarlet-type finite element spaces for any cell shape. The approach is based on the composition of permutations and transformations by cell sub-entity. Current approaches to generating degree-of-freedom maps for arbitrary order problems typically rely on a consistent orientation of cell entities that permits the definition of a common local coordinate system on shared edges and faces. However, while orientation of a mesh is straightforward for simplex cells and is a local operation, it is not a strictly local operation for quadrilateral cells and, in the case of hexahedral cells, not all meshes are orientable. The permutation and transformation approach is developed for a range of element types, including arbitrary degree Lagrange, serendipity, and divergence- and curl-conforming elements, and for a range of cell shapes. The approach is local and can be applied to cells of any shape, including general polytopes and meshes with mixed cell types. A number of examples are presented and the developed approach has been implemented in open-source libraries.\",\"PeriodicalId\":7036,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software (TOMS)\",\"volume\":\"32 1\",\"pages\":\"1 - 23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software (TOMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3524456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3524456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Construction of Arbitrary Order Finite Element Degree-of-Freedom Maps on Polygonal and Polyhedral Cell Meshes
We develop a method for generating degree-of-freedom maps for arbitrary order Ciarlet-type finite element spaces for any cell shape. The approach is based on the composition of permutations and transformations by cell sub-entity. Current approaches to generating degree-of-freedom maps for arbitrary order problems typically rely on a consistent orientation of cell entities that permits the definition of a common local coordinate system on shared edges and faces. However, while orientation of a mesh is straightforward for simplex cells and is a local operation, it is not a strictly local operation for quadrilateral cells and, in the case of hexahedral cells, not all meshes are orientable. The permutation and transformation approach is developed for a range of element types, including arbitrary degree Lagrange, serendipity, and divergence- and curl-conforming elements, and for a range of cell shapes. The approach is local and can be applied to cells of any shape, including general polytopes and meshes with mixed cell types. A number of examples are presented and the developed approach has been implemented in open-source libraries.