Krishna Siva Teja Chopperla , Jeremy A. Smith , Jason H. Ideker
{"title":"硅酸盐水泥与补充胶凝材料防止碱-硅反应的效果","authors":"Krishna Siva Teja Chopperla , Jeremy A. Smith , Jason H. Ideker","doi":"10.1016/j.cement.2022.100031","DOIUrl":null,"url":null,"abstract":"<div><p>This paper details a study on the efficacy of portland-limestone cements (PLCs) in combination with supplementary cementitious materials (SCMs) to prevent expansion due to alkali-silica reaction (ASR). The PLCs studied include both interground (10–15% limestone by mass) and interblended (10% limestone by mass) systems. In this study, ASTM Type II/V cements, five different SCMs, two very-highly reactive fine aggregates, and six SCM combinations were investigated. A total of 100 mixtures were assessed using three different accelerated laboratory test methods to investigate if the SCM combinations that are used with OPCs can be utilized as-is, increased, or decreased when used instead with PLCs. The test methods used to evaluate ASR included the Pyrex mortar bar test (PMBT, ASTM C441), the accelerated mortar bar test (AMBT, ASTM C1567), and the miniature concrete prism test (MCPT, AASHTO T 380). The difference in performance between PLCs with SCMs and parent OPCs with SCMs in the MCPT conditions was further evaluated using pore solution alkalinity and electrical resistivity analysis. The efficacy of the SCM combinations to prevent ASR was also evaluated with a pozzolanic reactivity test. The expansion results from the accelerated laboratory test methods revealed that the mixtures with PLCs and SCMs had similar or better overall performance when compared to the mixtures with the parent OPCs and SCMs. It was observed that the particle size of the added limestone in interblended PLC with SCM mixtures could have a significant influence on the ASR expansion that may alter the output of the test (pass/fail). Consequently, the SCM combinations that are used with OPCs can likely be utilized as-is when used with interground PLCs with up to 15% limestone to prevent ASR. The pore solution and bulk electrical resistivity analysis showed that the lower pore solution alkalinity and higher resistance to mass transport are the main contributing factors towards PLCs’ overall improved performance for ASR mitigation in the presence of SCMs.</p></div>","PeriodicalId":100225,"journal":{"name":"CEMENT","volume":"8 ","pages":"Article 100031"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666549222000111/pdfft?md5=c38d67f918a1547be2aaa2217548e1af&pid=1-s2.0-S2666549222000111-main.pdf","citationCount":"4","resultStr":"{\"title\":\"The efficacy of portland-limestone cements with supplementary cementitious materials to prevent alkali-silica reaction\",\"authors\":\"Krishna Siva Teja Chopperla , Jeremy A. Smith , Jason H. Ideker\",\"doi\":\"10.1016/j.cement.2022.100031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper details a study on the efficacy of portland-limestone cements (PLCs) in combination with supplementary cementitious materials (SCMs) to prevent expansion due to alkali-silica reaction (ASR). The PLCs studied include both interground (10–15% limestone by mass) and interblended (10% limestone by mass) systems. In this study, ASTM Type II/V cements, five different SCMs, two very-highly reactive fine aggregates, and six SCM combinations were investigated. A total of 100 mixtures were assessed using three different accelerated laboratory test methods to investigate if the SCM combinations that are used with OPCs can be utilized as-is, increased, or decreased when used instead with PLCs. The test methods used to evaluate ASR included the Pyrex mortar bar test (PMBT, ASTM C441), the accelerated mortar bar test (AMBT, ASTM C1567), and the miniature concrete prism test (MCPT, AASHTO T 380). The difference in performance between PLCs with SCMs and parent OPCs with SCMs in the MCPT conditions was further evaluated using pore solution alkalinity and electrical resistivity analysis. The efficacy of the SCM combinations to prevent ASR was also evaluated with a pozzolanic reactivity test. The expansion results from the accelerated laboratory test methods revealed that the mixtures with PLCs and SCMs had similar or better overall performance when compared to the mixtures with the parent OPCs and SCMs. It was observed that the particle size of the added limestone in interblended PLC with SCM mixtures could have a significant influence on the ASR expansion that may alter the output of the test (pass/fail). Consequently, the SCM combinations that are used with OPCs can likely be utilized as-is when used with interground PLCs with up to 15% limestone to prevent ASR. The pore solution and bulk electrical resistivity analysis showed that the lower pore solution alkalinity and higher resistance to mass transport are the main contributing factors towards PLCs’ overall improved performance for ASR mitigation in the presence of SCMs.</p></div>\",\"PeriodicalId\":100225,\"journal\":{\"name\":\"CEMENT\",\"volume\":\"8 \",\"pages\":\"Article 100031\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666549222000111/pdfft?md5=c38d67f918a1547be2aaa2217548e1af&pid=1-s2.0-S2666549222000111-main.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CEMENT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666549222000111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEMENT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666549222000111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
摘要
本文详细研究了波特兰-石灰石胶结剂(plc)与补充胶凝材料(SCMs)结合防止碱-硅反应(ASR)引起的膨胀的功效。所研究的plc包括接地(10-15%石灰石质量)和混合(10%石灰石质量)系统。在这项研究中,研究了ASTM II/V型水泥、五种不同的SCM、两种非常高活性的细骨料和六种SCM组合。使用三种不同的加速实验室测试方法评估了总共100种混合物,以调查与OPCs一起使用的SCM组合在与plc一起使用时是否可以原样使用,增加或减少。评估ASR的试验方法包括Pyrex砂浆棒试验(PMBT, ASTM C441)、加速砂浆棒试验(AMBT, ASTM C1567)和微型混凝土棱镜试验(MCPT, AASHTO T 380)。在MCPT条件下,使用孔溶液碱度和电阻率分析进一步评估了带有SCMs的plc和带有SCMs的母OPCs在性能上的差异。用火山灰反应性试验评价了SCM组合预防ASR的效果。加速实验室测试方法的膨胀结果显示,与母体OPCs和SCMs的混合物相比,plc和SCMs的混合物具有相似或更好的整体性能。可以观察到,在PLC和SCM混合料中添加的石灰石的粒度对ASR膨胀有显著影响,这可能会改变测试的输出(通过/不通过)。因此,与opc一起使用的SCM组合可能在与含有高达15%石灰石的接地plc一起使用时原样使用,以防止ASR。孔隙溶液和体电阻率分析表明,在SCMs存在下,较低的孔隙溶液碱度和较高的质量传输阻力是plc总体上改善ASR缓解性能的主要因素。
The efficacy of portland-limestone cements with supplementary cementitious materials to prevent alkali-silica reaction
This paper details a study on the efficacy of portland-limestone cements (PLCs) in combination with supplementary cementitious materials (SCMs) to prevent expansion due to alkali-silica reaction (ASR). The PLCs studied include both interground (10–15% limestone by mass) and interblended (10% limestone by mass) systems. In this study, ASTM Type II/V cements, five different SCMs, two very-highly reactive fine aggregates, and six SCM combinations were investigated. A total of 100 mixtures were assessed using three different accelerated laboratory test methods to investigate if the SCM combinations that are used with OPCs can be utilized as-is, increased, or decreased when used instead with PLCs. The test methods used to evaluate ASR included the Pyrex mortar bar test (PMBT, ASTM C441), the accelerated mortar bar test (AMBT, ASTM C1567), and the miniature concrete prism test (MCPT, AASHTO T 380). The difference in performance between PLCs with SCMs and parent OPCs with SCMs in the MCPT conditions was further evaluated using pore solution alkalinity and electrical resistivity analysis. The efficacy of the SCM combinations to prevent ASR was also evaluated with a pozzolanic reactivity test. The expansion results from the accelerated laboratory test methods revealed that the mixtures with PLCs and SCMs had similar or better overall performance when compared to the mixtures with the parent OPCs and SCMs. It was observed that the particle size of the added limestone in interblended PLC with SCM mixtures could have a significant influence on the ASR expansion that may alter the output of the test (pass/fail). Consequently, the SCM combinations that are used with OPCs can likely be utilized as-is when used with interground PLCs with up to 15% limestone to prevent ASR. The pore solution and bulk electrical resistivity analysis showed that the lower pore solution alkalinity and higher resistance to mass transport are the main contributing factors towards PLCs’ overall improved performance for ASR mitigation in the presence of SCMs.