{"title":"HC-SPH:三角帆蚌S1超家族的保守丝氨酸蛋白酶同源物","authors":"Qingzhong Liu, B. Xu, T. Xiao","doi":"10.25431/1824-307X/ISJ.V0I0.173-183","DOIUrl":null,"url":null,"abstract":"Serine proteases play central roles in immune defense in invertebrates through innate immunity, and are particularly important complement system in molluscs because their susceptibility to infection due to lack of an adaptive immune ability. A gene encoding the serine protease homolog from the triangle - shell pearl mussel (Hyriopsis cumingii) was identified and designated as HC-SPH in this study. Protein sequence analysis revealed that HC-SPH consists of a typical Tryp_SPc functional domain of serine protease of S1 family lead by a signal peptide, and the molecule shares a highly conserved sequence and structural organization with other members, including a cleavage site, 3 enzymatic active sites and 3 substrate binding sites, so that it was clustered into a trypsin-like serine protease subfamily of the S1 superfamily. Semi - quantitative analysis of the amplicons separated on agarose gel by comparing to the β-actin products revealed that the digestive gland had a strong expression while the gonads were seen as weak expression sites. Infected by Aeromonas hydrophila, the gene expression was significantly up - regulated in the kidney at the 6 hours post challenge (hpc), stomach at 12 hpc and gills at 24 hpc while the expression maintained steadily unchanged in the digestive gland. However, up to 48 hpc, the expression levels in all four tissues reached significantly high, and also joined by a high level of expression in intestine that was down - regulated before 24 hpc, to build up an enhanced immune defense. The complementary up - regulation of the gene expression in these tissues suggested a temporal and spatial reinforce model for HC-SPH in immune response.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2019-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"HC-SPH: A conserved serine protease homolog of S1 superfamily in the triangle-shell pearl mussel (Hyriopsis cumingii)\",\"authors\":\"Qingzhong Liu, B. Xu, T. Xiao\",\"doi\":\"10.25431/1824-307X/ISJ.V0I0.173-183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Serine proteases play central roles in immune defense in invertebrates through innate immunity, and are particularly important complement system in molluscs because their susceptibility to infection due to lack of an adaptive immune ability. A gene encoding the serine protease homolog from the triangle - shell pearl mussel (Hyriopsis cumingii) was identified and designated as HC-SPH in this study. Protein sequence analysis revealed that HC-SPH consists of a typical Tryp_SPc functional domain of serine protease of S1 family lead by a signal peptide, and the molecule shares a highly conserved sequence and structural organization with other members, including a cleavage site, 3 enzymatic active sites and 3 substrate binding sites, so that it was clustered into a trypsin-like serine protease subfamily of the S1 superfamily. Semi - quantitative analysis of the amplicons separated on agarose gel by comparing to the β-actin products revealed that the digestive gland had a strong expression while the gonads were seen as weak expression sites. Infected by Aeromonas hydrophila, the gene expression was significantly up - regulated in the kidney at the 6 hours post challenge (hpc), stomach at 12 hpc and gills at 24 hpc while the expression maintained steadily unchanged in the digestive gland. However, up to 48 hpc, the expression levels in all four tissues reached significantly high, and also joined by a high level of expression in intestine that was down - regulated before 24 hpc, to build up an enhanced immune defense. The complementary up - regulation of the gene expression in these tissues suggested a temporal and spatial reinforce model for HC-SPH in immune response.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2019-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.25431/1824-307X/ISJ.V0I0.173-183\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.25431/1824-307X/ISJ.V0I0.173-183","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
HC-SPH: A conserved serine protease homolog of S1 superfamily in the triangle-shell pearl mussel (Hyriopsis cumingii)
Serine proteases play central roles in immune defense in invertebrates through innate immunity, and are particularly important complement system in molluscs because their susceptibility to infection due to lack of an adaptive immune ability. A gene encoding the serine protease homolog from the triangle - shell pearl mussel (Hyriopsis cumingii) was identified and designated as HC-SPH in this study. Protein sequence analysis revealed that HC-SPH consists of a typical Tryp_SPc functional domain of serine protease of S1 family lead by a signal peptide, and the molecule shares a highly conserved sequence and structural organization with other members, including a cleavage site, 3 enzymatic active sites and 3 substrate binding sites, so that it was clustered into a trypsin-like serine protease subfamily of the S1 superfamily. Semi - quantitative analysis of the amplicons separated on agarose gel by comparing to the β-actin products revealed that the digestive gland had a strong expression while the gonads were seen as weak expression sites. Infected by Aeromonas hydrophila, the gene expression was significantly up - regulated in the kidney at the 6 hours post challenge (hpc), stomach at 12 hpc and gills at 24 hpc while the expression maintained steadily unchanged in the digestive gland. However, up to 48 hpc, the expression levels in all four tissues reached significantly high, and also joined by a high level of expression in intestine that was down - regulated before 24 hpc, to build up an enhanced immune defense. The complementary up - regulation of the gene expression in these tissues suggested a temporal and spatial reinforce model for HC-SPH in immune response.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.