基于智能分割和MIM图谱的鼻咽癌危险器官自动分割

葛迦, Ge Jia, 宁丽华, Ning Lihua, 严森祥, Y. Senxiang, 陆中杰, Luo Zhongjie
{"title":"基于智能分割和MIM图谱的鼻咽癌危险器官自动分割","authors":"葛迦, Ge Jia, 宁丽华, Ning Lihua, 严森祥, Y. Senxiang, 陆中杰, Luo Zhongjie","doi":"10.3760/CMA.J.ISSN.0254-5098.2019.09.006","DOIUrl":null,"url":null,"abstract":"Objective \nTo compare the accuracy of two automatic segmentation softwares (Smart Segmentation and MIM Atlas) in organs at risk (OARs) contouring for nasopharyngeal carcinoma (NPC). \n \n \nMethods \nTotally 55 NPC patients were retrospectively reviewed with manually contoured OARs on CT images, in which 30 cases were randomly selected to create a data base in the Smart Segmentation and MIM Atlas. The remaining 25 cases were automatically contoured with Smart Segmentation and MIM as test cases. The automatic contouring accuracies of two softwares were evaluated with Dice coefficient(DSC), Hausdorff distance(HD), and absolute volume difference(△V) using manual contours as a golden standard. \n \n \nResults \nThe overall DSC, HD and △V of all organs contoured by MIM Atlas and Smart Segmentation were (0.79±0.13) vs. (0.62±0.24) (t=14.06, P<0.05), (5.50±3.84)mm vs.(8.38±4.88)mm (t=-11.40, P<0.05), and (1.52±2.46) cm3vs. (2.38±3.57) cm3 (t=-4.70, P<0.05), respectively. The average DSC of 11 organs (brain stem, optic chiasm, bilateral lens, bilateral optic nerve, bilateral eyeballs, bilateral parotid gland, spinal cord) delineated by MIM Atlas was statistically greater than that of Smart Segmentation (t=5.27, 4.41, 6.34, 5.70, 10.62, 7.45, 3.96, 4.26, 6.25, 5.42, 7.23, P<0.05). The average HD of 10 organs (brain stem, optic chiasm, bilateral lens, bilateral optic nerve, bilateral eyeballs, left parotid gland, spinal cord) delineated by MIM Atlas was statistically less than that of Smart Segmentation (t=-4.51, -4.49, -3.92, -3.45, -5.36, -5.56, -3.89, -3.90, -3.60, -3.68, P<0.05). The average △V of 6 organs (brain stem, optic chiasm, left len, bilateral optic nerve, right eyeball) delineated by MIM Atlas was statistically less than that of Smart Segmentation (t=-2.83, -3.39, -2.56, -2.27, -2.43, -2.51, P<0.05). \n \n \nConclusions \nBoth softwares have reasonable contouring accuracy for larger organs. The accuracy decreased with the decrease of organ volumes and blurred boundary. Generally, MIM Atlas′s performs better than Smart Segmentation does. \n \n \nKey words: \nAutomatic contouring; Organs-at-risk segmentation; Atlas library; Nasopharyngeal carcinoma","PeriodicalId":36403,"journal":{"name":"中华放射医学与防护杂志","volume":"32 1","pages":"668-672"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic segmentation of organs at risk for nasopharyngeal carcinoma with Smart Segmentation and MIM Atlas\",\"authors\":\"葛迦, Ge Jia, 宁丽华, Ning Lihua, 严森祥, Y. Senxiang, 陆中杰, Luo Zhongjie\",\"doi\":\"10.3760/CMA.J.ISSN.0254-5098.2019.09.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective \\nTo compare the accuracy of two automatic segmentation softwares (Smart Segmentation and MIM Atlas) in organs at risk (OARs) contouring for nasopharyngeal carcinoma (NPC). \\n \\n \\nMethods \\nTotally 55 NPC patients were retrospectively reviewed with manually contoured OARs on CT images, in which 30 cases were randomly selected to create a data base in the Smart Segmentation and MIM Atlas. The remaining 25 cases were automatically contoured with Smart Segmentation and MIM as test cases. The automatic contouring accuracies of two softwares were evaluated with Dice coefficient(DSC), Hausdorff distance(HD), and absolute volume difference(△V) using manual contours as a golden standard. \\n \\n \\nResults \\nThe overall DSC, HD and △V of all organs contoured by MIM Atlas and Smart Segmentation were (0.79±0.13) vs. (0.62±0.24) (t=14.06, P<0.05), (5.50±3.84)mm vs.(8.38±4.88)mm (t=-11.40, P<0.05), and (1.52±2.46) cm3vs. (2.38±3.57) cm3 (t=-4.70, P<0.05), respectively. The average DSC of 11 organs (brain stem, optic chiasm, bilateral lens, bilateral optic nerve, bilateral eyeballs, bilateral parotid gland, spinal cord) delineated by MIM Atlas was statistically greater than that of Smart Segmentation (t=5.27, 4.41, 6.34, 5.70, 10.62, 7.45, 3.96, 4.26, 6.25, 5.42, 7.23, P<0.05). The average HD of 10 organs (brain stem, optic chiasm, bilateral lens, bilateral optic nerve, bilateral eyeballs, left parotid gland, spinal cord) delineated by MIM Atlas was statistically less than that of Smart Segmentation (t=-4.51, -4.49, -3.92, -3.45, -5.36, -5.56, -3.89, -3.90, -3.60, -3.68, P<0.05). The average △V of 6 organs (brain stem, optic chiasm, left len, bilateral optic nerve, right eyeball) delineated by MIM Atlas was statistically less than that of Smart Segmentation (t=-2.83, -3.39, -2.56, -2.27, -2.43, -2.51, P<0.05). \\n \\n \\nConclusions \\nBoth softwares have reasonable contouring accuracy for larger organs. The accuracy decreased with the decrease of organ volumes and blurred boundary. Generally, MIM Atlas′s performs better than Smart Segmentation does. \\n \\n \\nKey words: \\nAutomatic contouring; Organs-at-risk segmentation; Atlas library; Nasopharyngeal carcinoma\",\"PeriodicalId\":36403,\"journal\":{\"name\":\"中华放射医学与防护杂志\",\"volume\":\"32 1\",\"pages\":\"668-672\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中华放射医学与防护杂志\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3760/CMA.J.ISSN.0254-5098.2019.09.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中华放射医学与防护杂志","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3760/CMA.J.ISSN.0254-5098.2019.09.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

目的比较两种自动分割软件(Smart segmentation和MIM Atlas)在鼻咽癌危险器官(OARs)轮廓中的准确性。方法回顾性分析55例鼻咽癌患者的CT图像,随机选取30例,建立智能分割和MIM图谱数据库。剩余的25个用智能分割和MIM作为测试用例自动轮廓。以手工轮廓为黄金标准,用Dice系数(DSC)、Hausdorff距离(HD)和绝对体积差(△V)对两款软件的自动轮廓精度进行评价。结果MIM Atlas和Smart Segmentation绘制的各脏器DSC、HD、△V分别为(0.79±0.13)vs(0.62±0.24)(t=14.06, P<0.05)、(5.50±3.84)mm vs(8.38±4.88)mm (t=-11.40, P<0.05)、(1.52±2.46)cm3。(2.38±3.57)cm3 (t=-4.70, P<0.05)。MIM图谱所描绘的11个器官(脑干、视交叉、双侧晶状体、双侧视神经、双侧眼球、双侧腮腺、脊髓)的DSC均值显著高于Smart Segmentation (t=5.27、4.41、6.34、5.70、10.62、7.45、3.96、4.26、6.25、5.42、7.23,P<0.05)。MIM图谱所描绘的10个器官(脑干、视交叉、双侧晶体、双侧视神经、双侧眼球、左腮腺、脊髓)的平均HD低于Smart分割(t=-4.51、-4.49、-3.92、-3.45、-5.36、-5.56、-3.89、-3.90、-3.60、-3.68,P<0.05)。MIM Atlas划分的6个脏器(脑干、视交叉、左眼、双侧视神经、右眼球)的平均△V值小于Smart Segmentation (t=-2.83、-3.39、-2.56、-2.27、-2.43、-2.51,P<0.05)。结论两种软件对较大器官的轮廓精度均较好。准确度随器官体积的减小和边界的模糊而降低。一般来说,MIM Atlas的性能优于Smart Segmentation。关键词:自动轮廓;Organs-at-risk分割;阿特拉斯库;鼻咽癌
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic segmentation of organs at risk for nasopharyngeal carcinoma with Smart Segmentation and MIM Atlas
Objective To compare the accuracy of two automatic segmentation softwares (Smart Segmentation and MIM Atlas) in organs at risk (OARs) contouring for nasopharyngeal carcinoma (NPC). Methods Totally 55 NPC patients were retrospectively reviewed with manually contoured OARs on CT images, in which 30 cases were randomly selected to create a data base in the Smart Segmentation and MIM Atlas. The remaining 25 cases were automatically contoured with Smart Segmentation and MIM as test cases. The automatic contouring accuracies of two softwares were evaluated with Dice coefficient(DSC), Hausdorff distance(HD), and absolute volume difference(△V) using manual contours as a golden standard. Results The overall DSC, HD and △V of all organs contoured by MIM Atlas and Smart Segmentation were (0.79±0.13) vs. (0.62±0.24) (t=14.06, P<0.05), (5.50±3.84)mm vs.(8.38±4.88)mm (t=-11.40, P<0.05), and (1.52±2.46) cm3vs. (2.38±3.57) cm3 (t=-4.70, P<0.05), respectively. The average DSC of 11 organs (brain stem, optic chiasm, bilateral lens, bilateral optic nerve, bilateral eyeballs, bilateral parotid gland, spinal cord) delineated by MIM Atlas was statistically greater than that of Smart Segmentation (t=5.27, 4.41, 6.34, 5.70, 10.62, 7.45, 3.96, 4.26, 6.25, 5.42, 7.23, P<0.05). The average HD of 10 organs (brain stem, optic chiasm, bilateral lens, bilateral optic nerve, bilateral eyeballs, left parotid gland, spinal cord) delineated by MIM Atlas was statistically less than that of Smart Segmentation (t=-4.51, -4.49, -3.92, -3.45, -5.36, -5.56, -3.89, -3.90, -3.60, -3.68, P<0.05). The average △V of 6 organs (brain stem, optic chiasm, left len, bilateral optic nerve, right eyeball) delineated by MIM Atlas was statistically less than that of Smart Segmentation (t=-2.83, -3.39, -2.56, -2.27, -2.43, -2.51, P<0.05). Conclusions Both softwares have reasonable contouring accuracy for larger organs. The accuracy decreased with the decrease of organ volumes and blurred boundary. Generally, MIM Atlas′s performs better than Smart Segmentation does. Key words: Automatic contouring; Organs-at-risk segmentation; Atlas library; Nasopharyngeal carcinoma
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
中华放射医学与防护杂志
中华放射医学与防护杂志 Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
0.60
自引率
0.00%
发文量
6377
期刊介绍:
期刊最新文献
Infection control status of novel coronavirus pneumonia and radiation safety at CT workplace Current status of the application of radiodiagnosis and radiotherapy resources in Huai'an City in 2020 The application value of low-dose CT scan in pregnant women with COVID-19 Eeffects of tube voltage on image quality and radiation dose of paranasal sinus CT examination Analyzing quality of life and influencing factors in patients with bone metastasis of hepatocellular carcinoma before and after radiotherapy by bone pain scale
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1