Akello Mirriam, J. Mugwe, Jamal Nasar, Oscar Kisaka, Shivani Ranjan, Harun H. Gitari
{"title":"磷和接种缓生根瘤菌对大豆增产的作用","authors":"Akello Mirriam, J. Mugwe, Jamal Nasar, Oscar Kisaka, Shivani Ranjan, Harun H. Gitari","doi":"10.1155/2023/3231623","DOIUrl":null,"url":null,"abstract":"Soybean (Glycine max L. Merril) is among the key oil seed crops worldwide, providing several benefits from human consumption to the enhancement of soil productivity. In Uganda, legumes are cultivated on roughly 1.5 million ha, with soybean being produced on a lower production area of 150,000 ha compared to beans (925,000 ha) and groundnuts (253,000 ha). In terms of achievable yield, soybean emerges the highest at 1.2 t·ha−1 as compared to beans (0.5 t·ha−1) and groundnuts (0.7 t·ha−1). Despite the smallest production coverage area, the crop’s feasible grain yield is projected at 4.6 t·ha−1 under optimal environmental conditions. The major bottleneck to the crop’s production is the decreasing soil fertility, mainly caused by low nitrogen (N) but also phosphorus (P) levels in the soil. There is a high potential for supplying N from the atmosphere through biological N fixation (BNF), a natural process mediated by the symbiotic bacteria Bradyrhizobium japonicum, which requires optimum P levels for effective N fixation and increased yield. The current work reviews the present status of soybean production in Uganda, highlights its ecological requirements, importance, and constraints, and proposes the use of inoculation and P application to boost its production.","PeriodicalId":30608,"journal":{"name":"Advances in Agriculture","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Role of Phosphorus and Inoculation with Bradyrhizobium in Enhancing Soybean Production\",\"authors\":\"Akello Mirriam, J. Mugwe, Jamal Nasar, Oscar Kisaka, Shivani Ranjan, Harun H. Gitari\",\"doi\":\"10.1155/2023/3231623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soybean (Glycine max L. Merril) is among the key oil seed crops worldwide, providing several benefits from human consumption to the enhancement of soil productivity. In Uganda, legumes are cultivated on roughly 1.5 million ha, with soybean being produced on a lower production area of 150,000 ha compared to beans (925,000 ha) and groundnuts (253,000 ha). In terms of achievable yield, soybean emerges the highest at 1.2 t·ha−1 as compared to beans (0.5 t·ha−1) and groundnuts (0.7 t·ha−1). Despite the smallest production coverage area, the crop’s feasible grain yield is projected at 4.6 t·ha−1 under optimal environmental conditions. The major bottleneck to the crop’s production is the decreasing soil fertility, mainly caused by low nitrogen (N) but also phosphorus (P) levels in the soil. There is a high potential for supplying N from the atmosphere through biological N fixation (BNF), a natural process mediated by the symbiotic bacteria Bradyrhizobium japonicum, which requires optimum P levels for effective N fixation and increased yield. The current work reviews the present status of soybean production in Uganda, highlights its ecological requirements, importance, and constraints, and proposes the use of inoculation and P application to boost its production.\",\"PeriodicalId\":30608,\"journal\":{\"name\":\"Advances in Agriculture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Agriculture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/3231623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/3231623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 1
摘要
大豆(Glycine max L. Merril)是世界上主要的油料作物之一,从人类消费到提高土壤生产力提供了几个好处。在乌干达,豆科作物的种植面积约为150万公顷,而大豆的生产面积为15万公顷,低于豆类(92.5万公顷)和花生(25.3万公顷)。就可实现产量而言,大豆最高,为1.2 t·ha - 1,而豆类为0.5 t·ha - 1,花生为0.7 t·ha - 1。尽管生产覆盖面积最小,但在最佳环境条件下,该作物的可行粮食产量预计为4.6 t·ha - 1。作物生产的主要瓶颈是土壤肥力下降,这主要是由于土壤中氮(N)和磷(P)水平低造成的。通过生物固氮(BNF)从大气中提供氮的潜力很大,这是一种由共生细菌日本慢根瘤菌介导的自然过程,需要最佳的磷水平来有效地固定氮和提高产量。本文综述了乌干达大豆生产的现状,强调了其生态要求、重要性和制约因素,并提出了利用接种和施磷肥提高其产量的建议。
Role of Phosphorus and Inoculation with Bradyrhizobium in Enhancing Soybean Production
Soybean (Glycine max L. Merril) is among the key oil seed crops worldwide, providing several benefits from human consumption to the enhancement of soil productivity. In Uganda, legumes are cultivated on roughly 1.5 million ha, with soybean being produced on a lower production area of 150,000 ha compared to beans (925,000 ha) and groundnuts (253,000 ha). In terms of achievable yield, soybean emerges the highest at 1.2 t·ha−1 as compared to beans (0.5 t·ha−1) and groundnuts (0.7 t·ha−1). Despite the smallest production coverage area, the crop’s feasible grain yield is projected at 4.6 t·ha−1 under optimal environmental conditions. The major bottleneck to the crop’s production is the decreasing soil fertility, mainly caused by low nitrogen (N) but also phosphorus (P) levels in the soil. There is a high potential for supplying N from the atmosphere through biological N fixation (BNF), a natural process mediated by the symbiotic bacteria Bradyrhizobium japonicum, which requires optimum P levels for effective N fixation and increased yield. The current work reviews the present status of soybean production in Uganda, highlights its ecological requirements, importance, and constraints, and proposes the use of inoculation and P application to boost its production.