一种用于100ghz以下毫米波应用的低轮廓超宽带LTCC微带天线

D. Khezzar, D. Khedrouche, A. Denidni, C. Kärnfelt
{"title":"一种用于100ghz以下毫米波应用的低轮廓超宽带LTCC微带天线","authors":"D. Khezzar, D. Khedrouche, A. Denidni, C. Kärnfelt","doi":"10.21272/jnep.12(4).04009","DOIUrl":null,"url":null,"abstract":"In this paper, a low profile ultra-wideband microstrip antenna is proposed for millimeter wave applications below 100 GHz to meet the demands of high data rates in the future wireless communication systems. The proposed antenna consists of a non-uniform hexagon shape radiating element on the top of 13th layer of ceramic. The proposed antenna geometry is designed using Low Temperature Co-fired Ceramic (LTCC) technology for 3D multilayer vertical integration. HFSS and CST Studio are used for design and simulation of this ultra-wideband antenna. This antenna covers a bandwidth of 33.5 GHz that ranges from 62.5 GHz to more than 96 GHz with a peak gain of 5.7 dBi, stable radiation pattern across the bandwidth, and compact size of 3.16  3.2 mm2. The limitation of the narrow band in microstrip antenna is successfully dispensed by increasing the matching impedance bandwidth to more than 40 %. The proposed microstrip antenna is very useful for modern wireless communication systems because of its capability of covering a very wide bandwidth with favorable impedance matching and a stable radiation pattern at the considered frequency range. This antenna has another advantage in terms of the ability to be directly integrated with other RF chips using LTCC multilayer technology.","PeriodicalId":16514,"journal":{"name":"Journal of Nano- and Electronic Physics","volume":"57 1","pages":"04009-1-04009-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Low-profile Ultra-wideband LTCC Based Microstrip Antenna for Millimeter-wave Applications under 100 GHz\",\"authors\":\"D. Khezzar, D. Khedrouche, A. Denidni, C. Kärnfelt\",\"doi\":\"10.21272/jnep.12(4).04009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a low profile ultra-wideband microstrip antenna is proposed for millimeter wave applications below 100 GHz to meet the demands of high data rates in the future wireless communication systems. The proposed antenna consists of a non-uniform hexagon shape radiating element on the top of 13th layer of ceramic. The proposed antenna geometry is designed using Low Temperature Co-fired Ceramic (LTCC) technology for 3D multilayer vertical integration. HFSS and CST Studio are used for design and simulation of this ultra-wideband antenna. This antenna covers a bandwidth of 33.5 GHz that ranges from 62.5 GHz to more than 96 GHz with a peak gain of 5.7 dBi, stable radiation pattern across the bandwidth, and compact size of 3.16  3.2 mm2. The limitation of the narrow band in microstrip antenna is successfully dispensed by increasing the matching impedance bandwidth to more than 40 %. The proposed microstrip antenna is very useful for modern wireless communication systems because of its capability of covering a very wide bandwidth with favorable impedance matching and a stable radiation pattern at the considered frequency range. This antenna has another advantage in terms of the ability to be directly integrated with other RF chips using LTCC multilayer technology.\",\"PeriodicalId\":16514,\"journal\":{\"name\":\"Journal of Nano- and Electronic Physics\",\"volume\":\"57 1\",\"pages\":\"04009-1-04009-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nano- and Electronic Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21272/jnep.12(4).04009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano- and Electronic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21272/jnep.12(4).04009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了满足未来无线通信系统对高数据速率的需求,本文提出了一种用于100ghz以下毫米波应用的低轮廓超宽带微带天线。所提出的天线由位于第13层陶瓷顶部的非均匀六边形辐射元件组成。所提出的天线几何结构采用低温共烧陶瓷(LTCC)技术设计,用于3D多层垂直集成。利用HFSS和CST Studio对该超宽带天线进行设计和仿真。该天线覆盖33.5 GHz的带宽,范围从62.5 GHz到96 GHz以上,峰值增益为5.7 dBi,整个带宽的辐射方向图稳定,尺寸紧凑,为3.163.2 mm2。通过将匹配阻抗带宽提高到40%以上,成功地克服了微带天线窄带的限制。所提出的微带天线能够覆盖非常宽的带宽,具有良好的阻抗匹配和在所考虑的频率范围内稳定的辐射方向图,对现代无线通信系统非常有用。这种天线的另一个优点是能够使用LTCC多层技术直接与其他射频芯片集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Low-profile Ultra-wideband LTCC Based Microstrip Antenna for Millimeter-wave Applications under 100 GHz
In this paper, a low profile ultra-wideband microstrip antenna is proposed for millimeter wave applications below 100 GHz to meet the demands of high data rates in the future wireless communication systems. The proposed antenna consists of a non-uniform hexagon shape radiating element on the top of 13th layer of ceramic. The proposed antenna geometry is designed using Low Temperature Co-fired Ceramic (LTCC) technology for 3D multilayer vertical integration. HFSS and CST Studio are used for design and simulation of this ultra-wideband antenna. This antenna covers a bandwidth of 33.5 GHz that ranges from 62.5 GHz to more than 96 GHz with a peak gain of 5.7 dBi, stable radiation pattern across the bandwidth, and compact size of 3.16  3.2 mm2. The limitation of the narrow band in microstrip antenna is successfully dispensed by increasing the matching impedance bandwidth to more than 40 %. The proposed microstrip antenna is very useful for modern wireless communication systems because of its capability of covering a very wide bandwidth with favorable impedance matching and a stable radiation pattern at the considered frequency range. This antenna has another advantage in terms of the ability to be directly integrated with other RF chips using LTCC multilayer technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Epoxy-polyester Nanocomposite Materials with Improved Physical and Mechanical Properties for Increasing Transport Vehicle Reliability Influence of Tunable Work Function on SOI-based DMG Multi-channel Junctionless Thin Film Transistor Theoretical Study of Photo-Luminescence Emission Using the Line Shape Function for Semiconductor Quantum Dots First Principle Study and Optimal Doping for High Thermoelectric Performance of TaXSn Materials (X = Co, Ir and Rh) Chemical Approach Based ZnS-ZnO Nanocomposite Synthesis and Assessment of their Structural, Morphological and Photocatalytic Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1