基于知识的蛋白质局部结构预测方法

Ching-Tai Chen, Hsin-Nan Lin, K. Wu, Ting-Yi Sung, W. Hsu
{"title":"基于知识的蛋白质局部结构预测方法","authors":"Ching-Tai Chen, Hsin-Nan Lin, K. Wu, Ting-Yi Sung, W. Hsu","doi":"10.1142/9781860947292_0029","DOIUrl":null,"url":null,"abstract":"Local structure prediction can facilitate ab initio structure prediction, protein threading, and remote homology detection. However, previous approaches to local structure prediction suffer from poor accuracy. In this paper, we propose a knowledge-based prediction method that assigns a measure called the local match rate to each position of an amino acid sequence to estimate the confidence of our approach. To remedy prediction results with low local match rates, we use a neural network prediction method. Then, we have a hybrid prediction method, HYPLOSP (HYbrid method to Protein LOcal Structure Prediction) that combines our knowledge-based method with a neural network method. We test the method on two different structural alphabets and evaluate it by QN, which is similar to Q3 in secondary structure prediction. The experimental results show that our method yields a significant improvement over previous studies.","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":"66 1","pages":"257-266"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Knowledge-Based Approach to Protein Local Structure Prediction\",\"authors\":\"Ching-Tai Chen, Hsin-Nan Lin, K. Wu, Ting-Yi Sung, W. Hsu\",\"doi\":\"10.1142/9781860947292_0029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Local structure prediction can facilitate ab initio structure prediction, protein threading, and remote homology detection. However, previous approaches to local structure prediction suffer from poor accuracy. In this paper, we propose a knowledge-based prediction method that assigns a measure called the local match rate to each position of an amino acid sequence to estimate the confidence of our approach. To remedy prediction results with low local match rates, we use a neural network prediction method. Then, we have a hybrid prediction method, HYPLOSP (HYbrid method to Protein LOcal Structure Prediction) that combines our knowledge-based method with a neural network method. We test the method on two different structural alphabets and evaluate it by QN, which is similar to Q3 in secondary structure prediction. The experimental results show that our method yields a significant improvement over previous studies.\",\"PeriodicalId\":74513,\"journal\":{\"name\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"volume\":\"66 1\",\"pages\":\"257-266\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9781860947292_0029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781860947292_0029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

局部结构预测有助于从头计算结构预测、蛋白质穿线和远程同源性检测。然而,以往的局部结构预测方法存在精度不高的问题。在本文中,我们提出了一种基于知识的预测方法,该方法为氨基酸序列的每个位置分配一个称为局部匹配率的度量来估计我们的方法的置信度。为了弥补局部匹配率低的预测结果,我们使用了神经网络预测方法。然后,我们提出了一种混合预测方法,HYPLOSP (hybrid method to Protein LOcal Structure prediction),它将基于知识的方法与神经网络方法相结合。我们在两种不同的结构字母上测试了该方法,并用QN对其进行了评价,QN与Q3在二级结构预测方面相似。实验结果表明,我们的方法比以往的研究有了明显的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Knowledge-Based Approach to Protein Local Structure Prediction
Local structure prediction can facilitate ab initio structure prediction, protein threading, and remote homology detection. However, previous approaches to local structure prediction suffer from poor accuracy. In this paper, we propose a knowledge-based prediction method that assigns a measure called the local match rate to each position of an amino acid sequence to estimate the confidence of our approach. To remedy prediction results with low local match rates, we use a neural network prediction method. Then, we have a hybrid prediction method, HYPLOSP (HYbrid method to Protein LOcal Structure Prediction) that combines our knowledge-based method with a neural network method. We test the method on two different structural alphabets and evaluate it by QN, which is similar to Q3 in secondary structure prediction. The experimental results show that our method yields a significant improvement over previous studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tuning Privacy-Utility Tradeoff in Genomic Studies Using Selective SNP Hiding. The Future of Bioinformatics CHEMICAL COMPOUND CLASSIFICATION WITH AUTOMATICALLY MINED STRUCTURE PATTERNS. Predicting Nucleolar Proteins Using Support-Vector Machines Proceedings of the 6th Asia-Pacific Bioinformatics Conference, APBC 2008, 14-17 January 2008, Kyoto, Japan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1