{"title":"机载激光扫描对不同林分结构产量表估算生长量的改进和简化能力试验","authors":"L. Kulla, Ivan Sačkov, M. Juriš","doi":"10.1515/FORJ-2016-0005","DOIUrl":null,"url":null,"abstract":"Abstract Even if stand inventories based on growth tables have been widely discussed over the last years, this method of forest mensuration is still widely applied due to favourable ratio between costs and achievable precision of stand growing stock estimation. The aim of the study was to verify the potential of airborne laser scanning data (ALS) for direct estimation of mean stand height and mean stand density (stocking) as fundamental inputs for forest mensuration based on yield tables. The material from two reference plots with substantially different stand structure was processed by REFLEX software, and confronted with the results of the precise terrestrial inventory. The number of detected tree tops decreased from 100% in the case of super-dominant trees to 30% and 5% in the case of supressed trees at the homogeneous and heterogeneous plot, respectively. The correlation of ALS heights with terrestrially measured heights was R = 0.88 at the homogenous plot, and R = 0.77 at the heterogeneous plot. The tendency to underestimate dominant and to overestimate suppressed trees was revealed at both plots, but was more pronounced at the heterogeneous one. Nevertheless we justified that the mean ALS height calculated from the heights of the detected trees represented the biometric mean stand height linked to the stem with the mean basal area quite well. The stocking estimated by REFLEX software according to delineated crowns´ area was also closer to the real value of stocking than the one obtained by the routine mensuration procedure. The results indicate promising potential of the ALS data processed by REFLEX software to rationalise forest mensuration based on yield tables in even-aged forest structures.","PeriodicalId":56352,"journal":{"name":"Forestry Journal","volume":"74 1","pages":"39 - 47"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Test of airborne laser scanning ability to refine and streamline growing stock estimations by yield tables in different stand structures\",\"authors\":\"L. Kulla, Ivan Sačkov, M. Juriš\",\"doi\":\"10.1515/FORJ-2016-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Even if stand inventories based on growth tables have been widely discussed over the last years, this method of forest mensuration is still widely applied due to favourable ratio between costs and achievable precision of stand growing stock estimation. The aim of the study was to verify the potential of airborne laser scanning data (ALS) for direct estimation of mean stand height and mean stand density (stocking) as fundamental inputs for forest mensuration based on yield tables. The material from two reference plots with substantially different stand structure was processed by REFLEX software, and confronted with the results of the precise terrestrial inventory. The number of detected tree tops decreased from 100% in the case of super-dominant trees to 30% and 5% in the case of supressed trees at the homogeneous and heterogeneous plot, respectively. The correlation of ALS heights with terrestrially measured heights was R = 0.88 at the homogenous plot, and R = 0.77 at the heterogeneous plot. The tendency to underestimate dominant and to overestimate suppressed trees was revealed at both plots, but was more pronounced at the heterogeneous one. Nevertheless we justified that the mean ALS height calculated from the heights of the detected trees represented the biometric mean stand height linked to the stem with the mean basal area quite well. The stocking estimated by REFLEX software according to delineated crowns´ area was also closer to the real value of stocking than the one obtained by the routine mensuration procedure. The results indicate promising potential of the ALS data processed by REFLEX software to rationalise forest mensuration based on yield tables in even-aged forest structures.\",\"PeriodicalId\":56352,\"journal\":{\"name\":\"Forestry Journal\",\"volume\":\"74 1\",\"pages\":\"39 - 47\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forestry Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/FORJ-2016-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forestry Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/FORJ-2016-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Test of airborne laser scanning ability to refine and streamline growing stock estimations by yield tables in different stand structures
Abstract Even if stand inventories based on growth tables have been widely discussed over the last years, this method of forest mensuration is still widely applied due to favourable ratio between costs and achievable precision of stand growing stock estimation. The aim of the study was to verify the potential of airborne laser scanning data (ALS) for direct estimation of mean stand height and mean stand density (stocking) as fundamental inputs for forest mensuration based on yield tables. The material from two reference plots with substantially different stand structure was processed by REFLEX software, and confronted with the results of the precise terrestrial inventory. The number of detected tree tops decreased from 100% in the case of super-dominant trees to 30% and 5% in the case of supressed trees at the homogeneous and heterogeneous plot, respectively. The correlation of ALS heights with terrestrially measured heights was R = 0.88 at the homogenous plot, and R = 0.77 at the heterogeneous plot. The tendency to underestimate dominant and to overestimate suppressed trees was revealed at both plots, but was more pronounced at the heterogeneous one. Nevertheless we justified that the mean ALS height calculated from the heights of the detected trees represented the biometric mean stand height linked to the stem with the mean basal area quite well. The stocking estimated by REFLEX software according to delineated crowns´ area was also closer to the real value of stocking than the one obtained by the routine mensuration procedure. The results indicate promising potential of the ALS data processed by REFLEX software to rationalise forest mensuration based on yield tables in even-aged forest structures.
期刊介绍:
Central European Forestry Journal (published as Lesnícky Èasopis - Forestry Journal until 2016) publishes novel science originating from research in forestry and related braches. Central European Forestry Journal is a professional peer-reviewed scientific journal published 4-time a year. The journal contains original papers and review papers of basic and applied research from all fields of forestry and related disciplines. The editorial office accepts the manuscripts within the focus of the journal exclusively in English language. The journal does not have article processing charges (APCs) nor article submission charges. Central European Forestry Journal, abbreviation: Cent. Eur. For. J., publishes original papers and review papers of basic and applied research from all fields of forestry and related scientific areas. The journal focuses on forestry issues relevant for Europe, primarily Central European regions. Original works and review papers can be submitted only in English language.