{"title":"文档间引用检测作为文档聚类中全文语义分析的替代方法","authors":"P. D. Mazière, M. Hulle","doi":"10.1109/MLSP.2013.6661952","DOIUrl":null,"url":null,"abstract":"We discuss here the search for inter-document references as an alternative to the grouping of document inventories based on a full text semantic analysis. The used document inventory, which is not publicly available, was provided to us by the European Union (EU) in the framework of an EU project, the aim of which was to analyse, classify, and visualise EU funded research in social sciences and humanities in EU framework programmes FP5 and FP6. This project, called the SSH project for short, was aimed at the evaluation of the contributions of research to the development of EU policies. For the semantic based grouping, we start from a Multi-Dimensional Scaling analysis of the document vectors, which is the result of a prior semantic analysis. As an alternative to a semantic analysis, we searched for inter-document references or direct references. Direct references are defined as terms that explicitly refer to other documents present in the inventory. We show that the grouping based on references is largely similar to the one based on semantics, but with considerably less computational efforts. In addition, the non-expert can make better use of the results, since the references are displayed as graphical webpages with hyperlinks pointing to both the referenced and the referencing document(s), and the reason of linkage. Finally, we show that the combination of a database, to store the data and the (intermediate) results, and a webserver, to visualise the results, offers a powerful platform to analyse the document inventory and to share the results with all participants/collaborators involved in a data- and computation intensive EU-project, thereby guaranteeing both data- and result-consistency.","PeriodicalId":73290,"journal":{"name":"IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing","volume":"75 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inter-document reference detection as an alternative to full text semantic analysis in document clustering\",\"authors\":\"P. D. Mazière, M. Hulle\",\"doi\":\"10.1109/MLSP.2013.6661952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss here the search for inter-document references as an alternative to the grouping of document inventories based on a full text semantic analysis. The used document inventory, which is not publicly available, was provided to us by the European Union (EU) in the framework of an EU project, the aim of which was to analyse, classify, and visualise EU funded research in social sciences and humanities in EU framework programmes FP5 and FP6. This project, called the SSH project for short, was aimed at the evaluation of the contributions of research to the development of EU policies. For the semantic based grouping, we start from a Multi-Dimensional Scaling analysis of the document vectors, which is the result of a prior semantic analysis. As an alternative to a semantic analysis, we searched for inter-document references or direct references. Direct references are defined as terms that explicitly refer to other documents present in the inventory. We show that the grouping based on references is largely similar to the one based on semantics, but with considerably less computational efforts. In addition, the non-expert can make better use of the results, since the references are displayed as graphical webpages with hyperlinks pointing to both the referenced and the referencing document(s), and the reason of linkage. Finally, we show that the combination of a database, to store the data and the (intermediate) results, and a webserver, to visualise the results, offers a powerful platform to analyse the document inventory and to share the results with all participants/collaborators involved in a data- and computation intensive EU-project, thereby guaranteeing both data- and result-consistency.\",\"PeriodicalId\":73290,\"journal\":{\"name\":\"IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing\",\"volume\":\"75 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2013.6661952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2013.6661952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inter-document reference detection as an alternative to full text semantic analysis in document clustering
We discuss here the search for inter-document references as an alternative to the grouping of document inventories based on a full text semantic analysis. The used document inventory, which is not publicly available, was provided to us by the European Union (EU) in the framework of an EU project, the aim of which was to analyse, classify, and visualise EU funded research in social sciences and humanities in EU framework programmes FP5 and FP6. This project, called the SSH project for short, was aimed at the evaluation of the contributions of research to the development of EU policies. For the semantic based grouping, we start from a Multi-Dimensional Scaling analysis of the document vectors, which is the result of a prior semantic analysis. As an alternative to a semantic analysis, we searched for inter-document references or direct references. Direct references are defined as terms that explicitly refer to other documents present in the inventory. We show that the grouping based on references is largely similar to the one based on semantics, but with considerably less computational efforts. In addition, the non-expert can make better use of the results, since the references are displayed as graphical webpages with hyperlinks pointing to both the referenced and the referencing document(s), and the reason of linkage. Finally, we show that the combination of a database, to store the data and the (intermediate) results, and a webserver, to visualise the results, offers a powerful platform to analyse the document inventory and to share the results with all participants/collaborators involved in a data- and computation intensive EU-project, thereby guaranteeing both data- and result-consistency.