{"title":"15CDV6 HSLA钢最小量和全润滑条件下高速加工参数优化","authors":"A. H. Khawaja, M. Jahanzaib, T. A. Cheema","doi":"10.14743/apem2020.4.374","DOIUrl":null,"url":null,"abstract":"High-speed machining (HSM) maintains a high interest in the preparation of metal parts for optimum results, but with the application of HSM, the sustainability issue becomes important. To overcome the problem, minimum quantity lubrication (MQL) during HSM is one of the innovative and challenging tasks during conventional cutting (milling) to improve quality, productivity, and strength under the umbrella of sustainability. The objective of this research is to achieve sustainable machining by simultaneously optimizing sustainable machining drivers during the HSM of 15CDV6 HSLA steel under MQL and flood lubrication. The response surface methodology has been applied for the development of mathematical models and selecting the best combination of process parameters to optimized responses, i.e. surface roughness, material removal rate, and strength. Optimization associated with sustainability produced compromising optimal results (Min. Ra 0.131 µm, Max. MRR 0.64 cm3/min, and Max. ST 1132 MPa) at the highest cutting speed 270 m/min and the lowest feed rate 0.09 mm/rev and depth of cut 0.15 mm under MQL. The comparative investigation exposed that significant improvement in Ra (1.1-16.6 %) and ST (1.3-2.3 %) of the material using MQL has been witnessed and gives a strong indication that MQL is the best substitute than the flood lubrication. The scientific contribution of the approach is to develop mathematical models under MQL and flood lubrication that will aid practitioners to choose input parameters for desired responses without experimentations. The work would be beneficial in the field of aviation, defense, and aeronautical applications due to the excellent mechanical properties of 15CDV6 HSLA steel.","PeriodicalId":48763,"journal":{"name":"Advances in Production Engineering & Management","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"High-speed machining parametric optimization of 15CDV6 HSLA steel under minimum quantity and flood lubrication\",\"authors\":\"A. H. Khawaja, M. Jahanzaib, T. A. Cheema\",\"doi\":\"10.14743/apem2020.4.374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-speed machining (HSM) maintains a high interest in the preparation of metal parts for optimum results, but with the application of HSM, the sustainability issue becomes important. To overcome the problem, minimum quantity lubrication (MQL) during HSM is one of the innovative and challenging tasks during conventional cutting (milling) to improve quality, productivity, and strength under the umbrella of sustainability. The objective of this research is to achieve sustainable machining by simultaneously optimizing sustainable machining drivers during the HSM of 15CDV6 HSLA steel under MQL and flood lubrication. The response surface methodology has been applied for the development of mathematical models and selecting the best combination of process parameters to optimized responses, i.e. surface roughness, material removal rate, and strength. Optimization associated with sustainability produced compromising optimal results (Min. Ra 0.131 µm, Max. MRR 0.64 cm3/min, and Max. ST 1132 MPa) at the highest cutting speed 270 m/min and the lowest feed rate 0.09 mm/rev and depth of cut 0.15 mm under MQL. The comparative investigation exposed that significant improvement in Ra (1.1-16.6 %) and ST (1.3-2.3 %) of the material using MQL has been witnessed and gives a strong indication that MQL is the best substitute than the flood lubrication. The scientific contribution of the approach is to develop mathematical models under MQL and flood lubrication that will aid practitioners to choose input parameters for desired responses without experimentations. The work would be beneficial in the field of aviation, defense, and aeronautical applications due to the excellent mechanical properties of 15CDV6 HSLA steel.\",\"PeriodicalId\":48763,\"journal\":{\"name\":\"Advances in Production Engineering & Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2020-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Production Engineering & Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.14743/apem2020.4.374\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Production Engineering & Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.14743/apem2020.4.374","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
High-speed machining parametric optimization of 15CDV6 HSLA steel under minimum quantity and flood lubrication
High-speed machining (HSM) maintains a high interest in the preparation of metal parts for optimum results, but with the application of HSM, the sustainability issue becomes important. To overcome the problem, minimum quantity lubrication (MQL) during HSM is one of the innovative and challenging tasks during conventional cutting (milling) to improve quality, productivity, and strength under the umbrella of sustainability. The objective of this research is to achieve sustainable machining by simultaneously optimizing sustainable machining drivers during the HSM of 15CDV6 HSLA steel under MQL and flood lubrication. The response surface methodology has been applied for the development of mathematical models and selecting the best combination of process parameters to optimized responses, i.e. surface roughness, material removal rate, and strength. Optimization associated with sustainability produced compromising optimal results (Min. Ra 0.131 µm, Max. MRR 0.64 cm3/min, and Max. ST 1132 MPa) at the highest cutting speed 270 m/min and the lowest feed rate 0.09 mm/rev and depth of cut 0.15 mm under MQL. The comparative investigation exposed that significant improvement in Ra (1.1-16.6 %) and ST (1.3-2.3 %) of the material using MQL has been witnessed and gives a strong indication that MQL is the best substitute than the flood lubrication. The scientific contribution of the approach is to develop mathematical models under MQL and flood lubrication that will aid practitioners to choose input parameters for desired responses without experimentations. The work would be beneficial in the field of aviation, defense, and aeronautical applications due to the excellent mechanical properties of 15CDV6 HSLA steel.
期刊介绍:
Advances in Production Engineering & Management (APEM journal) is an interdisciplinary international academic journal published quarterly. The main goal of the APEM journal is to present original, high quality, theoretical and application-oriented research developments in all areas of production engineering and production management to a broad audience of academics and practitioners. In order to bridge the gap between theory and practice, applications based on advanced theory and case studies are particularly welcome. For theoretical papers, their originality and research contributions are the main factors in the evaluation process. General approaches, formalisms, algorithms or techniques should be illustrated with significant applications that demonstrate their applicability to real-world problems. Please note the APEM journal is not intended especially for studying problems in the finance, economics, business, and bank sectors even though the methodology in the paper is quality/project management oriented. Therefore, the papers should include a substantial level of engineering issues in the field of manufacturing engineering.