15CDV6 HSLA钢最小量和全润滑条件下高速加工参数优化

IF 2.8 3区 工程技术 Q2 ENGINEERING, MANUFACTURING Advances in Production Engineering & Management Pub Date : 2020-12-24 DOI:10.14743/apem2020.4.374
A. H. Khawaja, M. Jahanzaib, T. A. Cheema
{"title":"15CDV6 HSLA钢最小量和全润滑条件下高速加工参数优化","authors":"A. H. Khawaja, M. Jahanzaib, T. A. Cheema","doi":"10.14743/apem2020.4.374","DOIUrl":null,"url":null,"abstract":"High-speed machining (HSM) maintains a high interest in the preparation of metal parts for optimum results, but with the application of HSM, the sustainability issue becomes important. To overcome the problem, minimum quantity lubrication (MQL) during HSM is one of the innovative and challenging tasks during conventional cutting (milling) to improve quality, productivity, and strength under the umbrella of sustainability. The objective of this research is to achieve sustainable machining by simultaneously optimizing sustainable machining drivers during the HSM of 15CDV6 HSLA steel under MQL and flood lubrication. The response surface methodology has been applied for the development of mathematical models and selecting the best combination of process parameters to optimized responses, i.e. surface roughness, material removal rate, and strength. Optimization associated with sustainability produced compromising optimal results (Min. Ra 0.131 µm, Max. MRR 0.64 cm3/min, and Max. ST 1132 MPa) at the highest cutting speed 270 m/min and the lowest feed rate 0.09 mm/rev and depth of cut 0.15 mm under MQL. The comparative investigation exposed that significant improvement in Ra (1.1-16.6 %) and ST (1.3-2.3 %) of the material using MQL has been witnessed and gives a strong indication that MQL is the best substitute than the flood lubrication. The scientific contribution of the approach is to develop mathematical models under MQL and flood lubrication that will aid practitioners to choose input parameters for desired responses without experimentations. The work would be beneficial in the field of aviation, defense, and aeronautical applications due to the excellent mechanical properties of 15CDV6 HSLA steel.","PeriodicalId":48763,"journal":{"name":"Advances in Production Engineering & Management","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"High-speed machining parametric optimization of 15CDV6 HSLA steel under minimum quantity and flood lubrication\",\"authors\":\"A. H. Khawaja, M. Jahanzaib, T. A. Cheema\",\"doi\":\"10.14743/apem2020.4.374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-speed machining (HSM) maintains a high interest in the preparation of metal parts for optimum results, but with the application of HSM, the sustainability issue becomes important. To overcome the problem, minimum quantity lubrication (MQL) during HSM is one of the innovative and challenging tasks during conventional cutting (milling) to improve quality, productivity, and strength under the umbrella of sustainability. The objective of this research is to achieve sustainable machining by simultaneously optimizing sustainable machining drivers during the HSM of 15CDV6 HSLA steel under MQL and flood lubrication. The response surface methodology has been applied for the development of mathematical models and selecting the best combination of process parameters to optimized responses, i.e. surface roughness, material removal rate, and strength. Optimization associated with sustainability produced compromising optimal results (Min. Ra 0.131 µm, Max. MRR 0.64 cm3/min, and Max. ST 1132 MPa) at the highest cutting speed 270 m/min and the lowest feed rate 0.09 mm/rev and depth of cut 0.15 mm under MQL. The comparative investigation exposed that significant improvement in Ra (1.1-16.6 %) and ST (1.3-2.3 %) of the material using MQL has been witnessed and gives a strong indication that MQL is the best substitute than the flood lubrication. The scientific contribution of the approach is to develop mathematical models under MQL and flood lubrication that will aid practitioners to choose input parameters for desired responses without experimentations. The work would be beneficial in the field of aviation, defense, and aeronautical applications due to the excellent mechanical properties of 15CDV6 HSLA steel.\",\"PeriodicalId\":48763,\"journal\":{\"name\":\"Advances in Production Engineering & Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2020-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Production Engineering & Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.14743/apem2020.4.374\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Production Engineering & Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.14743/apem2020.4.374","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 8

摘要

高速加工(HSM)一直对金属零件的最佳效果制备感兴趣,但随着高速加工的应用,可持续性问题变得重要。为了克服这一问题,在高速切削加工过程中,最小量润滑(MQL)是传统切削(铣削)过程中具有创新性和挑战性的任务之一,可以在可持续发展的前提下提高质量、生产率和强度。本研究的目的是通过同时优化MQL和全润滑条件下15CDV6 HSLA钢高速加工过程中的可持续加工驱动器,实现可持续加工。响应面方法已被应用于数学模型的开发和选择最佳的工艺参数组合,以优化响应,即表面粗糙度,材料去除率和强度。与可持续性相关的优化产生了折衷的最佳结果(最小Ra为0.131µm,最大Ra为0.131µm)。MRR 0.64 cm3/min;最高切削速度为270 m/min,最低进给速度为0.09 mm/rev,切削深度为0.15 mm。对比研究表明,MQL对材料的Ra(1.1 ~ 16.6%)和ST(1.3 ~ 2.3%)有显著的改善,有力地表明MQL是比洪水润滑更好的替代品。该方法的科学贡献是在MQL和泛流润滑下开发数学模型,这将帮助从业者在没有实验的情况下选择所需响应的输入参数。由于15CDV6 HSLA钢具有优异的力学性能,该工作将有利于航空、国防和航空领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-speed machining parametric optimization of 15CDV6 HSLA steel under minimum quantity and flood lubrication
High-speed machining (HSM) maintains a high interest in the preparation of metal parts for optimum results, but with the application of HSM, the sustainability issue becomes important. To overcome the problem, minimum quantity lubrication (MQL) during HSM is one of the innovative and challenging tasks during conventional cutting (milling) to improve quality, productivity, and strength under the umbrella of sustainability. The objective of this research is to achieve sustainable machining by simultaneously optimizing sustainable machining drivers during the HSM of 15CDV6 HSLA steel under MQL and flood lubrication. The response surface methodology has been applied for the development of mathematical models and selecting the best combination of process parameters to optimized responses, i.e. surface roughness, material removal rate, and strength. Optimization associated with sustainability produced compromising optimal results (Min. Ra 0.131 µm, Max. MRR 0.64 cm3/min, and Max. ST 1132 MPa) at the highest cutting speed 270 m/min and the lowest feed rate 0.09 mm/rev and depth of cut 0.15 mm under MQL. The comparative investigation exposed that significant improvement in Ra (1.1-16.6 %) and ST (1.3-2.3 %) of the material using MQL has been witnessed and gives a strong indication that MQL is the best substitute than the flood lubrication. The scientific contribution of the approach is to develop mathematical models under MQL and flood lubrication that will aid practitioners to choose input parameters for desired responses without experimentations. The work would be beneficial in the field of aviation, defense, and aeronautical applications due to the excellent mechanical properties of 15CDV6 HSLA steel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Production Engineering & Management
Advances in Production Engineering & Management ENGINEERING, MANUFACTURINGMATERIALS SCIENC-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.90
自引率
22.20%
发文量
19
期刊介绍: Advances in Production Engineering & Management (APEM journal) is an interdisciplinary international academic journal published quarterly. The main goal of the APEM journal is to present original, high quality, theoretical and application-oriented research developments in all areas of production engineering and production management to a broad audience of academics and practitioners. In order to bridge the gap between theory and practice, applications based on advanced theory and case studies are particularly welcome. For theoretical papers, their originality and research contributions are the main factors in the evaluation process. General approaches, formalisms, algorithms or techniques should be illustrated with significant applications that demonstrate their applicability to real-world problems. Please note the APEM journal is not intended especially for studying problems in the finance, economics, business, and bank sectors even though the methodology in the paper is quality/project management oriented. Therefore, the papers should include a substantial level of engineering issues in the field of manufacturing engineering.
期刊最新文献
Optimal path planning of a disinfection mobile robot against COVID-19 in a ROS-based research platform A comparative study of different pull control strategies in multi-product manufacturing systems using discrete event simulation The impact of the collaborative workplace on the production system capacity: Simulation modelling vs. real-world application approach Molecular-dynamics study of multi-pulsed ultrafast laser interaction with copper A deep learning-based worker assistance system for error prevention: Case study in a real-world manual assembly
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1