{"title":"应用NRTL活度系数模型描述气体吸附动力学","authors":"K. Nieszporek, Tomasz Banach, P. Podkościelny","doi":"10.2478/s11532-013-0367-4","DOIUrl":null,"url":null,"abstract":"AbstractThe Non-Random Two-Liquid activity coefficient model is applied to describe the kinetics of pure gas adsorption on energetically heterogeneous solid surfaces. The surface energetic heterogeneity has been represented by the Gaussian-like function of the adsorption energy distribution. Two different kinetic isotherms have been presented. One of them, determined by using the statistical rate theory, has been critically discussed. The applicability of the presented approach has been demonstrated by a quantitative analysis of two sets of experimental data previously reported in the literature.\n","PeriodicalId":9888,"journal":{"name":"Central European Journal of Chemistry","volume":"24 1","pages":"185-193"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of NRTL activity coefficient model to describe the kinetics of gas adsorption\",\"authors\":\"K. Nieszporek, Tomasz Banach, P. Podkościelny\",\"doi\":\"10.2478/s11532-013-0367-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractThe Non-Random Two-Liquid activity coefficient model is applied to describe the kinetics of pure gas adsorption on energetically heterogeneous solid surfaces. The surface energetic heterogeneity has been represented by the Gaussian-like function of the adsorption energy distribution. Two different kinetic isotherms have been presented. One of them, determined by using the statistical rate theory, has been critically discussed. The applicability of the presented approach has been demonstrated by a quantitative analysis of two sets of experimental data previously reported in the literature.\\n\",\"PeriodicalId\":9888,\"journal\":{\"name\":\"Central European Journal of Chemistry\",\"volume\":\"24 1\",\"pages\":\"185-193\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11532-013-0367-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11532-013-0367-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of NRTL activity coefficient model to describe the kinetics of gas adsorption
AbstractThe Non-Random Two-Liquid activity coefficient model is applied to describe the kinetics of pure gas adsorption on energetically heterogeneous solid surfaces. The surface energetic heterogeneity has been represented by the Gaussian-like function of the adsorption energy distribution. Two different kinetic isotherms have been presented. One of them, determined by using the statistical rate theory, has been critically discussed. The applicability of the presented approach has been demonstrated by a quantitative analysis of two sets of experimental data previously reported in the literature.