H. M. Yassin, Ramadan Ragab Abdel Wahab, H. H. Hanafy
{"title":"风力双励磁同步发电机LVRT性能研究","authors":"H. M. Yassin, Ramadan Ragab Abdel Wahab, H. H. Hanafy","doi":"10.1177/0309524X221130718","DOIUrl":null,"url":null,"abstract":"This paper proposes an effective control technique for low voltage ride through (LVRT) capability in dual excited synchronous generator (DESG) wind turbines. The proposed control technique is dependent on controlling the field circuit parameters. Where the active power is controlled by the field-current space phasor magnitude and the reactive power is controlled by the field-voltage space phasor phase. With the proposed control strategy, the DESG can generate additional reactive power to support grid voltage recovery under grid faults. The DC-link voltage is kept within an acceptable limit since the excess power, due to the power mismatch between the mechanical and armature power is stored in the generator inertia. Using the proposed control strategy, the DESG can enhance the LVRT capability efficiently without using extra protection circuits or any additional control techniques during fault conditions. To test the proposed control method, simulation, and experimental results for a 1.1 kW DESG wind turbine system were obtained.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":"18 1","pages":"369 - 384"},"PeriodicalIF":1.5000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation of LVRT capability of wind driven dual excited synchronous generator\",\"authors\":\"H. M. Yassin, Ramadan Ragab Abdel Wahab, H. H. Hanafy\",\"doi\":\"10.1177/0309524X221130718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an effective control technique for low voltage ride through (LVRT) capability in dual excited synchronous generator (DESG) wind turbines. The proposed control technique is dependent on controlling the field circuit parameters. Where the active power is controlled by the field-current space phasor magnitude and the reactive power is controlled by the field-voltage space phasor phase. With the proposed control strategy, the DESG can generate additional reactive power to support grid voltage recovery under grid faults. The DC-link voltage is kept within an acceptable limit since the excess power, due to the power mismatch between the mechanical and armature power is stored in the generator inertia. Using the proposed control strategy, the DESG can enhance the LVRT capability efficiently without using extra protection circuits or any additional control techniques during fault conditions. To test the proposed control method, simulation, and experimental results for a 1.1 kW DESG wind turbine system were obtained.\",\"PeriodicalId\":51570,\"journal\":{\"name\":\"Wind Engineering\",\"volume\":\"18 1\",\"pages\":\"369 - 384\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/0309524X221130718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0309524X221130718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Investigation of LVRT capability of wind driven dual excited synchronous generator
This paper proposes an effective control technique for low voltage ride through (LVRT) capability in dual excited synchronous generator (DESG) wind turbines. The proposed control technique is dependent on controlling the field circuit parameters. Where the active power is controlled by the field-current space phasor magnitude and the reactive power is controlled by the field-voltage space phasor phase. With the proposed control strategy, the DESG can generate additional reactive power to support grid voltage recovery under grid faults. The DC-link voltage is kept within an acceptable limit since the excess power, due to the power mismatch between the mechanical and armature power is stored in the generator inertia. Using the proposed control strategy, the DESG can enhance the LVRT capability efficiently without using extra protection circuits or any additional control techniques during fault conditions. To test the proposed control method, simulation, and experimental results for a 1.1 kW DESG wind turbine system were obtained.
期刊介绍:
Having been in continuous publication since 1977, Wind Engineering is the oldest and most authoritative English language journal devoted entirely to the technology of wind energy. Under the direction of a distinguished editor and editorial board, Wind Engineering appears bimonthly with fully refereed contributions from active figures in the field, book notices, and summaries of the more interesting papers from other sources. Papers are published in Wind Engineering on: the aerodynamics of rotors and blades; machine subsystems and components; design; test programmes; power generation and transmission; measuring and recording techniques; installations and applications; and economic, environmental and legal aspects.