{"title":"利用智能手机的位置数据预测频繁的中级灾害后的不规则个人活动","authors":"T. Yabe, K. Tsubouchi, Akihito Sudo, Y. Sekimoto","doi":"10.1145/2996913.2996929","DOIUrl":null,"url":null,"abstract":"Mid-level disasters that frequently occur, such as typhoons and earthquakes, heavily affect human activities in urban areas by causing severe congestion and economic loss. Predicting the irregular movement of individuals following such disasters is crucial for managing urban systems. Past survey results show that mid-level disasters do not force many individuals to evacuate away from their homes, but do cause irregular movement by significantly delaying the movement timings, resulting in severe congestion in urban transportation. We propose a novel method that predicts such irregularity of individuals' movements in several mid-level disasters using various types of features including the victims' usual movement patterns, disaster information, and geospatial information of victims' locations. Using real GPS data of 1 million people in Tokyo, we show that our method can predict mobility delay with high accuracy,","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Predicting irregular individual movement following frequent mid-level disasters using location data from smartphones\",\"authors\":\"T. Yabe, K. Tsubouchi, Akihito Sudo, Y. Sekimoto\",\"doi\":\"10.1145/2996913.2996929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mid-level disasters that frequently occur, such as typhoons and earthquakes, heavily affect human activities in urban areas by causing severe congestion and economic loss. Predicting the irregular movement of individuals following such disasters is crucial for managing urban systems. Past survey results show that mid-level disasters do not force many individuals to evacuate away from their homes, but do cause irregular movement by significantly delaying the movement timings, resulting in severe congestion in urban transportation. We propose a novel method that predicts such irregularity of individuals' movements in several mid-level disasters using various types of features including the victims' usual movement patterns, disaster information, and geospatial information of victims' locations. Using real GPS data of 1 million people in Tokyo, we show that our method can predict mobility delay with high accuracy,\",\"PeriodicalId\":20525,\"journal\":{\"name\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2996913.2996929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996913.2996929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting irregular individual movement following frequent mid-level disasters using location data from smartphones
Mid-level disasters that frequently occur, such as typhoons and earthquakes, heavily affect human activities in urban areas by causing severe congestion and economic loss. Predicting the irregular movement of individuals following such disasters is crucial for managing urban systems. Past survey results show that mid-level disasters do not force many individuals to evacuate away from their homes, but do cause irregular movement by significantly delaying the movement timings, resulting in severe congestion in urban transportation. We propose a novel method that predicts such irregularity of individuals' movements in several mid-level disasters using various types of features including the victims' usual movement patterns, disaster information, and geospatial information of victims' locations. Using real GPS data of 1 million people in Tokyo, we show that our method can predict mobility delay with high accuracy,