通过上转换激活的线性发光恢复过程,对病毒特异性核酸序列进行简单的可视化固相检测。

Xiaorong Liu, Chaonan He, Qi Huang, Mengmeng Yu, Zhuang Qiu, Haoxin Cheng, Yifei Yang, Xian Hao, Xiaolei Wang
{"title":"通过上转换激活的线性发光恢复过程,对病毒特异性核酸序列进行简单的可视化固相检测。","authors":"Xiaorong Liu, Chaonan He, Qi Huang, Mengmeng Yu, Zhuang Qiu, Haoxin Cheng, Yifei Yang, Xian Hao, Xiaolei Wang","doi":"10.2139/ssrn.4015241","DOIUrl":null,"url":null,"abstract":"The development of portable solid-phase biosensors is of great significance for point-of-care testing (POCT). In this work, we constructed a simple visualized solid-phase biosensor based on luminescence resonance energy transfer (LRET) from upconversion nanoparticles (UCNPs) to gold nanoparticles (AuNPs) for quantitative detection of virus-specific nucleic acid sequences. The detection data showed that there was a linear relationship between the luminescence recovery of UCNPs and the concentrations of the target within the range of 5-100 nM, and the limit of detection (LOD) was 0.326 nM. Additionally, the luminescence recovery of UCNPs was visualized and quantitatively analyzed using a home-built luminescence image capture device and an open-source ImageJ software that can analyze and process images. Compared with conventional liquid-phase biosensors, the solid-phase analysis method we constructed not only has advantages in cost, portability and stability, but also is more conducive to the rapid acquisition and storage of the detected sample, which is expected to become a fast, efficient and reliable detection platform for POCT.","PeriodicalId":82956,"journal":{"name":"The Behavior analyst","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A facile visualized solid-phase detection of virus-specific nucleic acid sequences through an upconversion activated linear luminescence recovery process.\",\"authors\":\"Xiaorong Liu, Chaonan He, Qi Huang, Mengmeng Yu, Zhuang Qiu, Haoxin Cheng, Yifei Yang, Xian Hao, Xiaolei Wang\",\"doi\":\"10.2139/ssrn.4015241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of portable solid-phase biosensors is of great significance for point-of-care testing (POCT). In this work, we constructed a simple visualized solid-phase biosensor based on luminescence resonance energy transfer (LRET) from upconversion nanoparticles (UCNPs) to gold nanoparticles (AuNPs) for quantitative detection of virus-specific nucleic acid sequences. The detection data showed that there was a linear relationship between the luminescence recovery of UCNPs and the concentrations of the target within the range of 5-100 nM, and the limit of detection (LOD) was 0.326 nM. Additionally, the luminescence recovery of UCNPs was visualized and quantitatively analyzed using a home-built luminescence image capture device and an open-source ImageJ software that can analyze and process images. Compared with conventional liquid-phase biosensors, the solid-phase analysis method we constructed not only has advantages in cost, portability and stability, but also is more conducive to the rapid acquisition and storage of the detected sample, which is expected to become a fast, efficient and reliable detection platform for POCT.\",\"PeriodicalId\":82956,\"journal\":{\"name\":\"The Behavior analyst\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Behavior analyst\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.4015241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Behavior analyst","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.4015241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

便携式固相生物传感器的开发对即时检测(POCT)具有重要意义。在这项工作中,我们构建了一个简单的可视化固体相生物传感器,基于发光共振能量转移(LRET)从上转换纳米粒子(UCNPs)到金纳米粒子(AuNPs),用于定量检测病毒特异性核酸序列。检测数据表明,在5 ~ 100 nM范围内,UCNPs的发光回收率与靶物浓度呈良好的线性关系,检出限(LOD)为0.326 nM。此外,利用自制的发光图像采集装置和开源的图像分析处理软件ImageJ对UCNPs的发光恢复进行可视化和定量分析。与传统的液相生物传感器相比,我们构建的固相分析方法不仅在成本、便携性和稳定性方面具有优势,而且更有利于检测样品的快速采集和存储,有望成为POCT快速、高效、可靠的检测平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A facile visualized solid-phase detection of virus-specific nucleic acid sequences through an upconversion activated linear luminescence recovery process.
The development of portable solid-phase biosensors is of great significance for point-of-care testing (POCT). In this work, we constructed a simple visualized solid-phase biosensor based on luminescence resonance energy transfer (LRET) from upconversion nanoparticles (UCNPs) to gold nanoparticles (AuNPs) for quantitative detection of virus-specific nucleic acid sequences. The detection data showed that there was a linear relationship between the luminescence recovery of UCNPs and the concentrations of the target within the range of 5-100 nM, and the limit of detection (LOD) was 0.326 nM. Additionally, the luminescence recovery of UCNPs was visualized and quantitatively analyzed using a home-built luminescence image capture device and an open-source ImageJ software that can analyze and process images. Compared with conventional liquid-phase biosensors, the solid-phase analysis method we constructed not only has advantages in cost, portability and stability, but also is more conducive to the rapid acquisition and storage of the detected sample, which is expected to become a fast, efficient and reliable detection platform for POCT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A dual-response NIR fluorescent probe for separately and continuously recognizing H2S and Cys with different fluorescence signals and its applications. From droplets to ions: a comprehensive and consecutive ion formation modelling in atmosphere pressure interface of electrospray ionization mass spectrometry. Monitoring bacterial spore metabolic activity using heavy water-induced Raman peak evolution. Development of a mid-infrared sensor system for early fire identification in cotton harvesting operations. An electrochemical sensor based on AuPd@FexOy nanozymes for a sensitive and in situ quantitative detection of hydrogen peroxide in real samples.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1