Feng Wen, Tianyiyi He, Qiongfeng Shi, Ting Zhang, Chengkuo Lee
{"title":"用于传感和能量收集的超疏水摩擦电织物","authors":"Feng Wen, Tianyiyi He, Qiongfeng Shi, Ting Zhang, Chengkuo Lee","doi":"10.1109/MEMS46641.2020.9056221","DOIUrl":null,"url":null,"abstract":"Smart textile paves the way to a new generation of wearable electronics of Internet of Things (IoTs). However, the battery-dependent and hygroscopic limitations restrict the practical applications of self-powered textile-based electronics. To solve these problems, here we report a superhydrophobic textile based TENG using a facile coating approach to assemble CNTs/TPE onto textile. With improved anti-humidity and quick recovery capabilities from high moisture environment, the functionalized textile based-TENG enables relatively efficient biomechanical energy harvesting, anti-sweat human motion monitoring, especially gesture recognition of words of sign language based on superhydrophobic glove interface by using deep learning technology, maintaining high recognition accuracy even in high humidity atmosphere.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"41 9 1","pages":"582-585"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Superhydrophobic Triboelectric Textile for Sensing and Energy Harvesting Applications\",\"authors\":\"Feng Wen, Tianyiyi He, Qiongfeng Shi, Ting Zhang, Chengkuo Lee\",\"doi\":\"10.1109/MEMS46641.2020.9056221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart textile paves the way to a new generation of wearable electronics of Internet of Things (IoTs). However, the battery-dependent and hygroscopic limitations restrict the practical applications of self-powered textile-based electronics. To solve these problems, here we report a superhydrophobic textile based TENG using a facile coating approach to assemble CNTs/TPE onto textile. With improved anti-humidity and quick recovery capabilities from high moisture environment, the functionalized textile based-TENG enables relatively efficient biomechanical energy harvesting, anti-sweat human motion monitoring, especially gesture recognition of words of sign language based on superhydrophobic glove interface by using deep learning technology, maintaining high recognition accuracy even in high humidity atmosphere.\",\"PeriodicalId\":6776,\"journal\":{\"name\":\"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"41 9 1\",\"pages\":\"582-585\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMS46641.2020.9056221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMS46641.2020.9056221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Superhydrophobic Triboelectric Textile for Sensing and Energy Harvesting Applications
Smart textile paves the way to a new generation of wearable electronics of Internet of Things (IoTs). However, the battery-dependent and hygroscopic limitations restrict the practical applications of self-powered textile-based electronics. To solve these problems, here we report a superhydrophobic textile based TENG using a facile coating approach to assemble CNTs/TPE onto textile. With improved anti-humidity and quick recovery capabilities from high moisture environment, the functionalized textile based-TENG enables relatively efficient biomechanical energy harvesting, anti-sweat human motion monitoring, especially gesture recognition of words of sign language based on superhydrophobic glove interface by using deep learning technology, maintaining high recognition accuracy even in high humidity atmosphere.