{"title":"裸露和涂层多晶镍基高温合金Rene®80的蠕变断裂性能","authors":"M. M. Barjesteh, S. Abbasi, K. Madar, K. Shirvani","doi":"10.2298/jmmb201203036b","DOIUrl":null,"url":null,"abstract":"Creep deformation is one of the life time limiting reasons for gas turbine parts that are subjected to stresses at elevated temperatures. In this study, creep rupture behavior of uncoated and platinum-aluminide coated Rene?80 has been determined at 760?C/657 MPa, 871?C/343 MPa and 982?C/190 Mpa in air. For this purpose, an initial layer of platinum with a thickness of 6?m was applied on the creep specimens. Subsequently, the aluminizing were formed in the conventional pack cementation method via the Low Temperature-High Activity (LTHA) and High Temperature-Low Activity (HTLA) processes. Results of creep-rupture tests showed a decrease in resistance to creep rupture of coated specimen, compared to the uncoated ones. The reductions in rupture lives in LTHA and HTLA methods at 760?C/657 MPa, 871?C/343 MPa and 982?C/190 MPa were almost (26% and 41.8%), (27.6% and 38.5%) and (22.4% and 40.3%), respectively as compared to the uncoated ones. However, the HTLA aluminizing method showed an intense reduction in creep life. Results of fractographic studies on coated and uncoated specimens indicated a combination of ductile and brittle failure mechanisms for all samples. Although, the base failure mode in substrate was grain boundary voids, cracks initiated from coating at 760?C/657MPa and 871?C/343. No cracking in the coating was observed at 982?C/190MPa.","PeriodicalId":51090,"journal":{"name":"Journal of Mining and Metallurgy Section B-Metallurgy","volume":"35 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Creep rupture properties of bare and coated polycrystalline nickel-based superalloy Rene®80\",\"authors\":\"M. M. Barjesteh, S. Abbasi, K. Madar, K. Shirvani\",\"doi\":\"10.2298/jmmb201203036b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Creep deformation is one of the life time limiting reasons for gas turbine parts that are subjected to stresses at elevated temperatures. In this study, creep rupture behavior of uncoated and platinum-aluminide coated Rene?80 has been determined at 760?C/657 MPa, 871?C/343 MPa and 982?C/190 Mpa in air. For this purpose, an initial layer of platinum with a thickness of 6?m was applied on the creep specimens. Subsequently, the aluminizing were formed in the conventional pack cementation method via the Low Temperature-High Activity (LTHA) and High Temperature-Low Activity (HTLA) processes. Results of creep-rupture tests showed a decrease in resistance to creep rupture of coated specimen, compared to the uncoated ones. The reductions in rupture lives in LTHA and HTLA methods at 760?C/657 MPa, 871?C/343 MPa and 982?C/190 MPa were almost (26% and 41.8%), (27.6% and 38.5%) and (22.4% and 40.3%), respectively as compared to the uncoated ones. However, the HTLA aluminizing method showed an intense reduction in creep life. Results of fractographic studies on coated and uncoated specimens indicated a combination of ductile and brittle failure mechanisms for all samples. Although, the base failure mode in substrate was grain boundary voids, cracks initiated from coating at 760?C/657MPa and 871?C/343. No cracking in the coating was observed at 982?C/190MPa.\",\"PeriodicalId\":51090,\"journal\":{\"name\":\"Journal of Mining and Metallurgy Section B-Metallurgy\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mining and Metallurgy Section B-Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2298/jmmb201203036b\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Metallurgy Section B-Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/jmmb201203036b","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Creep rupture properties of bare and coated polycrystalline nickel-based superalloy Rene®80
Creep deformation is one of the life time limiting reasons for gas turbine parts that are subjected to stresses at elevated temperatures. In this study, creep rupture behavior of uncoated and platinum-aluminide coated Rene?80 has been determined at 760?C/657 MPa, 871?C/343 MPa and 982?C/190 Mpa in air. For this purpose, an initial layer of platinum with a thickness of 6?m was applied on the creep specimens. Subsequently, the aluminizing were formed in the conventional pack cementation method via the Low Temperature-High Activity (LTHA) and High Temperature-Low Activity (HTLA) processes. Results of creep-rupture tests showed a decrease in resistance to creep rupture of coated specimen, compared to the uncoated ones. The reductions in rupture lives in LTHA and HTLA methods at 760?C/657 MPa, 871?C/343 MPa and 982?C/190 MPa were almost (26% and 41.8%), (27.6% and 38.5%) and (22.4% and 40.3%), respectively as compared to the uncoated ones. However, the HTLA aluminizing method showed an intense reduction in creep life. Results of fractographic studies on coated and uncoated specimens indicated a combination of ductile and brittle failure mechanisms for all samples. Although, the base failure mode in substrate was grain boundary voids, cracks initiated from coating at 760?C/657MPa and 871?C/343. No cracking in the coating was observed at 982?C/190MPa.
期刊介绍:
University of Belgrade, Technical Faculty in Bor, has been publishing the journal called Journal of Mining and Metallurgy since 1965 and in 1997 it was divided in two independent journals dealing with mining and metallurgy separately. Since 2009 Journal of Mining and Metallurgy, Section B: Metallurgy has been accepted in Science Citation Index Expanded.
Journal of Mining and Metallurgy, Section B: Metallurgy presents an international medium for the publication of contributions on original research which reflect the new progresses in theory and practice of metallurgy. The Journal covers the latest research in all aspects of metallurgy including hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, solidification, mechanical working, solid state reactions, materials processing, surface treatment and relationships among processing, structure, and properties of materials.