源代码中的潜在主题可以预测缺失的架构策略吗?

Raghuram Gopalakrishnan, Palak Sharma, Mehdi Mirakhorli, M. Galster
{"title":"源代码中的潜在主题可以预测缺失的架构策略吗?","authors":"Raghuram Gopalakrishnan, Palak Sharma, Mehdi Mirakhorli, M. Galster","doi":"10.1109/ICSE.2017.10","DOIUrl":null,"url":null,"abstract":"Architectural tactics such as heartbeat, resource pooling, and scheduling provide solutions to satisfy reliability, security, performance, and other critical characteristics of a software system. Current design practices advocate rigorous up-front analysis of the system's quality concerns to identify tactics and where in the code they should be used. In this paper, we explore a bottom-up approach to recommend architectural tactics based on latent topics discovered in the source code of projects. We present a recommender system developed by building predictor models which capture relationships between topical concepts in source code and the use of specific architectural tactics in that code. Based on an extensive analysis of over 116,000 open source systems, we identify significant correlations between latent topics in source code and the usage of architectural tactics. We use this information to construct a predictor for generating tactic recommendations. Our approach is validated through a series of experiments which demonstrate the ability to generate package-level tactic recommendations. We provide further validation via two large-scale studies of Apache Hive and Hadoop to illustrate that our recommender system predicts tactics that are actually implemented by developers in later releases.","PeriodicalId":6505,"journal":{"name":"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)","volume":"9 1","pages":"15-26"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Can Latent Topics in Source Code Predict Missing Architectural Tactics?\",\"authors\":\"Raghuram Gopalakrishnan, Palak Sharma, Mehdi Mirakhorli, M. Galster\",\"doi\":\"10.1109/ICSE.2017.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Architectural tactics such as heartbeat, resource pooling, and scheduling provide solutions to satisfy reliability, security, performance, and other critical characteristics of a software system. Current design practices advocate rigorous up-front analysis of the system's quality concerns to identify tactics and where in the code they should be used. In this paper, we explore a bottom-up approach to recommend architectural tactics based on latent topics discovered in the source code of projects. We present a recommender system developed by building predictor models which capture relationships between topical concepts in source code and the use of specific architectural tactics in that code. Based on an extensive analysis of over 116,000 open source systems, we identify significant correlations between latent topics in source code and the usage of architectural tactics. We use this information to construct a predictor for generating tactic recommendations. Our approach is validated through a series of experiments which demonstrate the ability to generate package-level tactic recommendations. We provide further validation via two large-scale studies of Apache Hive and Hadoop to illustrate that our recommender system predicts tactics that are actually implemented by developers in later releases.\",\"PeriodicalId\":6505,\"journal\":{\"name\":\"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)\",\"volume\":\"9 1\",\"pages\":\"15-26\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSE.2017.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE.2017.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

诸如心跳、资源池和调度等体系结构策略提供了满足软件系统的可靠性、安全性、性能和其他关键特征的解决方案。当前的设计实践提倡对系统质量问题进行严格的预先分析,以确定策略以及应该在代码中的何处使用它们。在本文中,我们探索了一种自下而上的方法来推荐基于在项目源代码中发现的潜在主题的架构策略。我们提出了一个通过构建预测模型开发的推荐系统,该模型捕获源代码中的主题概念与代码中特定架构策略的使用之间的关系。基于对超过116,000个开放源代码系统的广泛分析,我们确定了源代码中潜在主题与架构策略的使用之间的重要相关性。我们使用这些信息来构建一个预测器来生成战术建议。我们的方法通过一系列实验得到了验证,这些实验证明了生成包级策略建议的能力。我们通过对Apache Hive和Hadoop的两个大规模研究提供了进一步的验证,以说明我们的推荐系统预测的策略实际上是由开发人员在以后的版本中实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Can Latent Topics in Source Code Predict Missing Architectural Tactics?
Architectural tactics such as heartbeat, resource pooling, and scheduling provide solutions to satisfy reliability, security, performance, and other critical characteristics of a software system. Current design practices advocate rigorous up-front analysis of the system's quality concerns to identify tactics and where in the code they should be used. In this paper, we explore a bottom-up approach to recommend architectural tactics based on latent topics discovered in the source code of projects. We present a recommender system developed by building predictor models which capture relationships between topical concepts in source code and the use of specific architectural tactics in that code. Based on an extensive analysis of over 116,000 open source systems, we identify significant correlations between latent topics in source code and the usage of architectural tactics. We use this information to construct a predictor for generating tactic recommendations. Our approach is validated through a series of experiments which demonstrate the ability to generate package-level tactic recommendations. We provide further validation via two large-scale studies of Apache Hive and Hadoop to illustrate that our recommender system predicts tactics that are actually implemented by developers in later releases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Unpacking of Android Apps Symbolic Model Extraction for Web Application Verification On Cross-Stack Configuration Errors Syntactic and Semantic Differencing for Combinatorial Models of Test Designs Fuzzy Fine-Grained Code-History Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1