高温高压气井固砂新技术评价与优化

A. Al-Taq, M. Alqam, Abdulla A. Alrustum
{"title":"高温高压气井固砂新技术评价与优化","authors":"A. Al-Taq, M. Alqam, Abdulla A. Alrustum","doi":"10.2118/207905-ms","DOIUrl":null,"url":null,"abstract":"\n Sand production is a common problem in wells completed in unconsolidated or poorly consolidated formation. Several problems are associated with sand production including erosion damage, and plugging of the well and surface production equipment, such as lines, valves, etc. Various mechanical solutions have been implemented to control or eliminate sand production. Screenless completion is an alternative method to conventional sand control techniques. Screenless completion methodology involves sand consolidation, a field-proven technique which offers viable and effective strategies to prevent sand production throughout the life of the well. Sand production can lead to production loss through sand filling up, production tubing restrictions, etc. Consequently, the need for an effective sand control is mandatory. Sand consolidation is a promising technique due to significant advancement in chemicals development for sand control. The challenge with the chemical consolidation systems is their ability to provide the highest possible compressive strength with minimum permeability reduction.\n A newly developed sand consolidation system was assessed in this study for its effectiveness in both sand consolidation and retained permeability. Two techniques were investigated in preparation/conditioning of sand samples. Following the conditioning state, the sand samples were treated with equivalent amounts of the two components of the newly developed sand consolidation system (Resin-A and Resin-B). A consolidation chamber was used to cure sand under simulated downhole conditions of a temperature (300°F) and a stress of 3,000 psi. The consolidated sand sample prepared using 3 wt% KCl brine preflush was associated with a reduction in plug permeability of more than 99% with a compressive strength of 1,100 psi. In the second method, which employed a diesel preflush in the sand sample preparation step, an average permeability of 63 mD and unconfined compressive strength nearly 900 psi were obtained. The effect of temperature and flow rate on return permeability were investigate. The paper presents in detail the lab work conducted to evaluate/optimize a newly developed chemical system for sand consolidation in HT/HP gas wells.","PeriodicalId":11069,"journal":{"name":"Day 2 Tue, November 16, 2021","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation and Optimization of a Newly Developed Chemical for Sand Consolidation: HTHP Gas Wells\",\"authors\":\"A. Al-Taq, M. Alqam, Abdulla A. Alrustum\",\"doi\":\"10.2118/207905-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Sand production is a common problem in wells completed in unconsolidated or poorly consolidated formation. Several problems are associated with sand production including erosion damage, and plugging of the well and surface production equipment, such as lines, valves, etc. Various mechanical solutions have been implemented to control or eliminate sand production. Screenless completion is an alternative method to conventional sand control techniques. Screenless completion methodology involves sand consolidation, a field-proven technique which offers viable and effective strategies to prevent sand production throughout the life of the well. Sand production can lead to production loss through sand filling up, production tubing restrictions, etc. Consequently, the need for an effective sand control is mandatory. Sand consolidation is a promising technique due to significant advancement in chemicals development for sand control. The challenge with the chemical consolidation systems is their ability to provide the highest possible compressive strength with minimum permeability reduction.\\n A newly developed sand consolidation system was assessed in this study for its effectiveness in both sand consolidation and retained permeability. Two techniques were investigated in preparation/conditioning of sand samples. Following the conditioning state, the sand samples were treated with equivalent amounts of the two components of the newly developed sand consolidation system (Resin-A and Resin-B). A consolidation chamber was used to cure sand under simulated downhole conditions of a temperature (300°F) and a stress of 3,000 psi. The consolidated sand sample prepared using 3 wt% KCl brine preflush was associated with a reduction in plug permeability of more than 99% with a compressive strength of 1,100 psi. In the second method, which employed a diesel preflush in the sand sample preparation step, an average permeability of 63 mD and unconfined compressive strength nearly 900 psi were obtained. The effect of temperature and flow rate on return permeability were investigate. The paper presents in detail the lab work conducted to evaluate/optimize a newly developed chemical system for sand consolidation in HT/HP gas wells.\",\"PeriodicalId\":11069,\"journal\":{\"name\":\"Day 2 Tue, November 16, 2021\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, November 16, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/207905-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, November 16, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/207905-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在未胶结或胶结不良的地层中完井时,出砂是常见的问题。与出砂有关的几个问题包括侵蚀损害、井和地面生产设备(如管线、阀门等)的堵塞。为了控制或消除出砂,已经实施了各种机械解决方案。无筛管完井是常规防砂技术的替代方法。无筛管完井方法包括固砂,这是一项经过现场验证的技术,为在井的整个生命周期内防止出砂提供了可行而有效的策略。出砂会因充填砂、生产油管受限等原因导致产量损失。因此,必须进行有效的防砂。由于防砂化学品的发展取得了重大进展,固砂技术是一项很有前途的技术。化学固结系统面临的挑战是它们能够在最小渗透率降低的情况下提供尽可能高的抗压强度。本研究评估了一种新开发的固砂系统在固砂和保留渗透率方面的有效性。研究了两种砂样制备/调理技术。在调节状态之后,将新开发的两种砂固结体系(树脂- a和树脂- b)进行等量处理。在模拟的井下温度(300°F)和压力(3000psi)条件下,使用固结室来固化砂土。使用3 wt% KCl盐水预冲后的固结砂样品,桥塞渗透率降低了99%以上,抗压强度达到1100 psi。在第二种方法中,在砂样制备步骤中使用柴油预冲洗,获得了平均渗透率为63 mD和无侧限抗压强度接近900 psi的砂样。研究了温度和流量对回油渗透率的影响。本文详细介绍了为评价和优化一种新开发的高温高压气井固砂化学体系而进行的实验室工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation and Optimization of a Newly Developed Chemical for Sand Consolidation: HTHP Gas Wells
Sand production is a common problem in wells completed in unconsolidated or poorly consolidated formation. Several problems are associated with sand production including erosion damage, and plugging of the well and surface production equipment, such as lines, valves, etc. Various mechanical solutions have been implemented to control or eliminate sand production. Screenless completion is an alternative method to conventional sand control techniques. Screenless completion methodology involves sand consolidation, a field-proven technique which offers viable and effective strategies to prevent sand production throughout the life of the well. Sand production can lead to production loss through sand filling up, production tubing restrictions, etc. Consequently, the need for an effective sand control is mandatory. Sand consolidation is a promising technique due to significant advancement in chemicals development for sand control. The challenge with the chemical consolidation systems is their ability to provide the highest possible compressive strength with minimum permeability reduction. A newly developed sand consolidation system was assessed in this study for its effectiveness in both sand consolidation and retained permeability. Two techniques were investigated in preparation/conditioning of sand samples. Following the conditioning state, the sand samples were treated with equivalent amounts of the two components of the newly developed sand consolidation system (Resin-A and Resin-B). A consolidation chamber was used to cure sand under simulated downhole conditions of a temperature (300°F) and a stress of 3,000 psi. The consolidated sand sample prepared using 3 wt% KCl brine preflush was associated with a reduction in plug permeability of more than 99% with a compressive strength of 1,100 psi. In the second method, which employed a diesel preflush in the sand sample preparation step, an average permeability of 63 mD and unconfined compressive strength nearly 900 psi were obtained. The effect of temperature and flow rate on return permeability were investigate. The paper presents in detail the lab work conducted to evaluate/optimize a newly developed chemical system for sand consolidation in HT/HP gas wells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Three-Dimensional Visualization of Oil Displacement by Foam in Porous Media Maximizing Condensate Recovery With Proven Cost Simulation for a Giant UAE Field: Base Study to Estimate Productivity between Horizontal and Vertical Wells Rationalization of Flares at Terminal Island A Geoengineering Approach to Maximum Reservoir Contact Wells Design: Case Study in a Carbonate Reservoir Under Water and Miscible Gas Injection Maximizing Brine Recovery After the Displacement of Reservoir Drill-in Fluids to Reduce Well Cost Via New, Alternate Technology In a Reservoir Offshore Abu Dhabi
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1