Miguel Gonzalez, S. Ayirala, Lyla Maskeen, A. Sofi
{"title":"用于EOR聚合物流体的微型粘度传感器","authors":"Miguel Gonzalez, S. Ayirala, Lyla Maskeen, A. Sofi","doi":"10.2118/209430-ms","DOIUrl":null,"url":null,"abstract":"\n There are currently no technologies available to measure polymer solution viscosities at realistic downhole conditions in a well during enhanced oil recovery (EOR). In this paper, custom-made probes using quartz tuning fork (QTF) resonators are demonstrated for measurements of viscosity of polymer fluids. The electromechanical response of the resonators was calibrated in simple Newtonian fluids and in non-Newtonian polymer fluids at different concentrations. The responses were then used to measure field-collected samples of polymer injection fluids. The measured viscosity values by tuning forks were lower than those measured by the conventional rheometer at 6.8 s-1, indicating the effect of viscoelasticity of the fluid. However, the predicted rheometer viscosity versus QTF measured viscosity showed a perfect exponential correlation, allowing for calibration between the two viscometers. The QTF sensors were shown to successfully produce accurate viscosity measurements of polymer fluids within the required polymer concentration ranges used in the field, and predicted field sample viscosities with less than 5% error from the rheometer data. These devices can be easily integrated into portable systems for lab or wellsite deployment as well as logging tools for downhole deployment.","PeriodicalId":10935,"journal":{"name":"Day 1 Mon, April 25, 2022","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Miniature Viscosity Sensors for EOR Polymer Fluids\",\"authors\":\"Miguel Gonzalez, S. Ayirala, Lyla Maskeen, A. Sofi\",\"doi\":\"10.2118/209430-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n There are currently no technologies available to measure polymer solution viscosities at realistic downhole conditions in a well during enhanced oil recovery (EOR). In this paper, custom-made probes using quartz tuning fork (QTF) resonators are demonstrated for measurements of viscosity of polymer fluids. The electromechanical response of the resonators was calibrated in simple Newtonian fluids and in non-Newtonian polymer fluids at different concentrations. The responses were then used to measure field-collected samples of polymer injection fluids. The measured viscosity values by tuning forks were lower than those measured by the conventional rheometer at 6.8 s-1, indicating the effect of viscoelasticity of the fluid. However, the predicted rheometer viscosity versus QTF measured viscosity showed a perfect exponential correlation, allowing for calibration between the two viscometers. The QTF sensors were shown to successfully produce accurate viscosity measurements of polymer fluids within the required polymer concentration ranges used in the field, and predicted field sample viscosities with less than 5% error from the rheometer data. These devices can be easily integrated into portable systems for lab or wellsite deployment as well as logging tools for downhole deployment.\",\"PeriodicalId\":10935,\"journal\":{\"name\":\"Day 1 Mon, April 25, 2022\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Mon, April 25, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/209430-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, April 25, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/209430-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Miniature Viscosity Sensors for EOR Polymer Fluids
There are currently no technologies available to measure polymer solution viscosities at realistic downhole conditions in a well during enhanced oil recovery (EOR). In this paper, custom-made probes using quartz tuning fork (QTF) resonators are demonstrated for measurements of viscosity of polymer fluids. The electromechanical response of the resonators was calibrated in simple Newtonian fluids and in non-Newtonian polymer fluids at different concentrations. The responses were then used to measure field-collected samples of polymer injection fluids. The measured viscosity values by tuning forks were lower than those measured by the conventional rheometer at 6.8 s-1, indicating the effect of viscoelasticity of the fluid. However, the predicted rheometer viscosity versus QTF measured viscosity showed a perfect exponential correlation, allowing for calibration between the two viscometers. The QTF sensors were shown to successfully produce accurate viscosity measurements of polymer fluids within the required polymer concentration ranges used in the field, and predicted field sample viscosities with less than 5% error from the rheometer data. These devices can be easily integrated into portable systems for lab or wellsite deployment as well as logging tools for downhole deployment.