用于EOR聚合物流体的微型粘度传感器

Miguel Gonzalez, S. Ayirala, Lyla Maskeen, A. Sofi
{"title":"用于EOR聚合物流体的微型粘度传感器","authors":"Miguel Gonzalez, S. Ayirala, Lyla Maskeen, A. Sofi","doi":"10.2118/209430-ms","DOIUrl":null,"url":null,"abstract":"\n There are currently no technologies available to measure polymer solution viscosities at realistic downhole conditions in a well during enhanced oil recovery (EOR). In this paper, custom-made probes using quartz tuning fork (QTF) resonators are demonstrated for measurements of viscosity of polymer fluids. The electromechanical response of the resonators was calibrated in simple Newtonian fluids and in non-Newtonian polymer fluids at different concentrations. The responses were then used to measure field-collected samples of polymer injection fluids. The measured viscosity values by tuning forks were lower than those measured by the conventional rheometer at 6.8 s-1, indicating the effect of viscoelasticity of the fluid. However, the predicted rheometer viscosity versus QTF measured viscosity showed a perfect exponential correlation, allowing for calibration between the two viscometers. The QTF sensors were shown to successfully produce accurate viscosity measurements of polymer fluids within the required polymer concentration ranges used in the field, and predicted field sample viscosities with less than 5% error from the rheometer data. These devices can be easily integrated into portable systems for lab or wellsite deployment as well as logging tools for downhole deployment.","PeriodicalId":10935,"journal":{"name":"Day 1 Mon, April 25, 2022","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Miniature Viscosity Sensors for EOR Polymer Fluids\",\"authors\":\"Miguel Gonzalez, S. Ayirala, Lyla Maskeen, A. Sofi\",\"doi\":\"10.2118/209430-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n There are currently no technologies available to measure polymer solution viscosities at realistic downhole conditions in a well during enhanced oil recovery (EOR). In this paper, custom-made probes using quartz tuning fork (QTF) resonators are demonstrated for measurements of viscosity of polymer fluids. The electromechanical response of the resonators was calibrated in simple Newtonian fluids and in non-Newtonian polymer fluids at different concentrations. The responses were then used to measure field-collected samples of polymer injection fluids. The measured viscosity values by tuning forks were lower than those measured by the conventional rheometer at 6.8 s-1, indicating the effect of viscoelasticity of the fluid. However, the predicted rheometer viscosity versus QTF measured viscosity showed a perfect exponential correlation, allowing for calibration between the two viscometers. The QTF sensors were shown to successfully produce accurate viscosity measurements of polymer fluids within the required polymer concentration ranges used in the field, and predicted field sample viscosities with less than 5% error from the rheometer data. These devices can be easily integrated into portable systems for lab or wellsite deployment as well as logging tools for downhole deployment.\",\"PeriodicalId\":10935,\"journal\":{\"name\":\"Day 1 Mon, April 25, 2022\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Mon, April 25, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/209430-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, April 25, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/209430-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目前还没有技术可以在提高采收率(EOR)过程中,在实际的井下条件下测量聚合物溶液的粘度。在本文中,使用石英音叉(QTF)谐振器的定制探头演示了聚合物流体粘度的测量。在简单牛顿流体和不同浓度的非牛顿聚合物流体中校准了谐振器的机电响应。然后将响应用于测量现场收集的聚合物注入液样品。音叉测得的粘度值低于常规流变仪测得的6.8 s-1,说明流体的粘弹性效应。然而,预测的流变仪粘度与QTF测量的粘度表现出完美的指数相关性,允许在两个粘度计之间进行校准。研究表明,QTF传感器能够在现场所需的聚合物浓度范围内,成功地对聚合物流体进行精确的粘度测量,并根据流变仪数据预测现场样品粘度,误差小于5%。这些设备可以很容易地集成到实验室或井场部署的便携式系统中,也可以集成到井下部署的测井工具中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Miniature Viscosity Sensors for EOR Polymer Fluids
There are currently no technologies available to measure polymer solution viscosities at realistic downhole conditions in a well during enhanced oil recovery (EOR). In this paper, custom-made probes using quartz tuning fork (QTF) resonators are demonstrated for measurements of viscosity of polymer fluids. The electromechanical response of the resonators was calibrated in simple Newtonian fluids and in non-Newtonian polymer fluids at different concentrations. The responses were then used to measure field-collected samples of polymer injection fluids. The measured viscosity values by tuning forks were lower than those measured by the conventional rheometer at 6.8 s-1, indicating the effect of viscoelasticity of the fluid. However, the predicted rheometer viscosity versus QTF measured viscosity showed a perfect exponential correlation, allowing for calibration between the two viscometers. The QTF sensors were shown to successfully produce accurate viscosity measurements of polymer fluids within the required polymer concentration ranges used in the field, and predicted field sample viscosities with less than 5% error from the rheometer data. These devices can be easily integrated into portable systems for lab or wellsite deployment as well as logging tools for downhole deployment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Determination of Transmission Coefficient and Electric Field Distribution of Rice Husk/ Pcl Composites Using Finite Element Method for Microwave Devices Mechanical Properties Evaluation in Friction Stir Welding of Different Pipes The chemistry of aluminum salts in papermaking Comparative study of guar gum and its cationic derivatives as pre-flocculating polymers for PCC fillers in papermaking applications Ultrastructural behavior of cell wall polysaccharides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1