D. Abdrazakov, M. Ziauddin, D. Vernigora, A. Beletskaya, I. Yakimchuk, O. Olennikova, D. Usoltsev, Max Nikolaev, M. Panga, A. Burlibayev
{"title":"整合最新实验室、软件和缓速酸技术提高碳酸盐岩酸处理效率:中亚案例研究","authors":"D. Abdrazakov, M. Ziauddin, D. Vernigora, A. Beletskaya, I. Yakimchuk, O. Olennikova, D. Usoltsev, Max Nikolaev, M. Panga, A. Burlibayev","doi":"10.2523/IPTC-19546-MS","DOIUrl":null,"url":null,"abstract":"\n Acidizing treatments in carbonates often result in significant skin decrease due to high reactivity of the formation with acids. Noticeable production increase or inability to run analysis tools after the treatment may lead to the conclusion that the matrix acidizing job was performed efficiently, when, in fact, the job was not optimized in terms of fluid volumes, acid types, wellbore coverage, and pumping rates. As a result, the final skin is not as low as it could be, and, most importantly, medium - and long-term post-acidizing production decline is faster than it could be with an optimized treatment.\n To overcome these concerns, an integrated approach to acidizing treatments was implemented for different oil fields in Kazakhstan. The integrated approach consists of comprehensive laboratory testing, which includes core flow tests with subsequent 3D computer tomography scanning. The tests help to determine wormholing regimes and channel geometry while providing calibration points for acid-rock interaction curves. These coefficients are used in the acidizing modeling software, which enables optimization of fluid volumes, pumping rates, and diversion strategy. The approach suggests the use of a single-phase retarded acid system is the most effective method of keeping the treatment in the dominant wormhole regime, especially at elevated temperature. The integrated approach loop is closed by the analysis of the distributed temperature sensor data to calibrate the efficiency of diversion and reservoir injectivity profile.\n The approach was introduced for different oil fields in Kazakhstan, with a variety of conditions: depths up to 5000 m and temperatures up to 145°C. The approach helped to optimize acid volumes by as much as 44% to achieve an optimum skin. In the mid-term perspective, this approach helped to reduce the production decline rate by at least 20%, and ongoing post-treatment analysis is even more promising.","PeriodicalId":11267,"journal":{"name":"Day 3 Thu, March 28, 2019","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Integration of Latest Laboratory, Software and Retarded Acid Technologies to Increase Efficiency of Acid Treatments in Carbonates: Case Studies from Central Asia\",\"authors\":\"D. Abdrazakov, M. Ziauddin, D. Vernigora, A. Beletskaya, I. Yakimchuk, O. Olennikova, D. Usoltsev, Max Nikolaev, M. Panga, A. Burlibayev\",\"doi\":\"10.2523/IPTC-19546-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Acidizing treatments in carbonates often result in significant skin decrease due to high reactivity of the formation with acids. Noticeable production increase or inability to run analysis tools after the treatment may lead to the conclusion that the matrix acidizing job was performed efficiently, when, in fact, the job was not optimized in terms of fluid volumes, acid types, wellbore coverage, and pumping rates. As a result, the final skin is not as low as it could be, and, most importantly, medium - and long-term post-acidizing production decline is faster than it could be with an optimized treatment.\\n To overcome these concerns, an integrated approach to acidizing treatments was implemented for different oil fields in Kazakhstan. The integrated approach consists of comprehensive laboratory testing, which includes core flow tests with subsequent 3D computer tomography scanning. The tests help to determine wormholing regimes and channel geometry while providing calibration points for acid-rock interaction curves. These coefficients are used in the acidizing modeling software, which enables optimization of fluid volumes, pumping rates, and diversion strategy. The approach suggests the use of a single-phase retarded acid system is the most effective method of keeping the treatment in the dominant wormhole regime, especially at elevated temperature. The integrated approach loop is closed by the analysis of the distributed temperature sensor data to calibrate the efficiency of diversion and reservoir injectivity profile.\\n The approach was introduced for different oil fields in Kazakhstan, with a variety of conditions: depths up to 5000 m and temperatures up to 145°C. The approach helped to optimize acid volumes by as much as 44% to achieve an optimum skin. In the mid-term perspective, this approach helped to reduce the production decline rate by at least 20%, and ongoing post-treatment analysis is even more promising.\",\"PeriodicalId\":11267,\"journal\":{\"name\":\"Day 3 Thu, March 28, 2019\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Thu, March 28, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2523/IPTC-19546-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, March 28, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2523/IPTC-19546-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integration of Latest Laboratory, Software and Retarded Acid Technologies to Increase Efficiency of Acid Treatments in Carbonates: Case Studies from Central Asia
Acidizing treatments in carbonates often result in significant skin decrease due to high reactivity of the formation with acids. Noticeable production increase or inability to run analysis tools after the treatment may lead to the conclusion that the matrix acidizing job was performed efficiently, when, in fact, the job was not optimized in terms of fluid volumes, acid types, wellbore coverage, and pumping rates. As a result, the final skin is not as low as it could be, and, most importantly, medium - and long-term post-acidizing production decline is faster than it could be with an optimized treatment.
To overcome these concerns, an integrated approach to acidizing treatments was implemented for different oil fields in Kazakhstan. The integrated approach consists of comprehensive laboratory testing, which includes core flow tests with subsequent 3D computer tomography scanning. The tests help to determine wormholing regimes and channel geometry while providing calibration points for acid-rock interaction curves. These coefficients are used in the acidizing modeling software, which enables optimization of fluid volumes, pumping rates, and diversion strategy. The approach suggests the use of a single-phase retarded acid system is the most effective method of keeping the treatment in the dominant wormhole regime, especially at elevated temperature. The integrated approach loop is closed by the analysis of the distributed temperature sensor data to calibrate the efficiency of diversion and reservoir injectivity profile.
The approach was introduced for different oil fields in Kazakhstan, with a variety of conditions: depths up to 5000 m and temperatures up to 145°C. The approach helped to optimize acid volumes by as much as 44% to achieve an optimum skin. In the mid-term perspective, this approach helped to reduce the production decline rate by at least 20%, and ongoing post-treatment analysis is even more promising.