Lan Shou, Lingling Zhou, Jinhua Hu, Qianru Zhu, Hong Luo
{"title":"Sanggenon C通过AMPK通路缓解棕榈酸诱导的HepG2细胞胰岛素抵抗","authors":"Lan Shou, Lingling Zhou, Jinhua Hu, Qianru Zhu, Hong Luo","doi":"10.4314/tjpr.v22i7.1","DOIUrl":null,"url":null,"abstract":"Purpose: To investigate the potential role of sanggenon C alleviating in insulin resistance.Methods: HepG2 cell line was incubated with increasing concentrations of sanggenon C at 1, 5, 10, 15 or 20 μM for 4 h. to induce cytotoxicity, and then further incubated with 100 μM palmitic acid to induce insulin resistance. HepG2 cells without sanggenon C and palmitic acid treatment servered as control group. Glucose uptake was determined by measuring 2-NBDG (2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)-amino]-D-glucose) fluorescence intensity using a microplate reader. Oil Red O staining was used to assess intracellular lipid accumulation, while oxidative stress was evaluated by enzyme-linked immunosorbent assay (ELISA).Results: Palmitic acid significantly decreased glucose uptake and increased intracellular lipid accumulation in HepG2 (p < 0.01), while sanggenon C enhanced t glucose uptake and lowered lipid accumulation in insulin-resistant HepG2 (p < 0.01). Sanggenon C significantly attenuated palmitic acidinduced increase in p-insulin receptor substrate 1 (p-IRS1), as well as decrease in p-AKT and p-FOXO1 (p < 0.01). Palmitic acid also induced oxidative stress in HepG2 through the up-regulation of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as the down-regulation of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). However, sanggenon C reduced ROS and MDA levels (p < 0.05), and enhanced SOD and GSH-Px in insulin-resistant HepG2 (p < 0.05). However, sanggenon C significantly increased p-AMP-activated protein kinase (p-AMPK) levels and p-ACC (acetyl-CoA carboxylase) in insulin-resistant HepG2 (p < 0.01).Conclusion: Sanggenon C lowers oxidative stress and ameliorates lipid accumulation thereby alleviating palmitic acid-induced insulin-resistant HepG2 cells via activation of AMPK pathway, thus suggesting that it is a potential strategy for overcoming insulin resistance. ","PeriodicalId":23347,"journal":{"name":"Tropical Journal of Pharmaceutical Research","volume":"2014 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sanggenon C alleviates palmitic acid-induced insulin resistance in HepG2 cells via AMPK pathway\",\"authors\":\"Lan Shou, Lingling Zhou, Jinhua Hu, Qianru Zhu, Hong Luo\",\"doi\":\"10.4314/tjpr.v22i7.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: To investigate the potential role of sanggenon C alleviating in insulin resistance.Methods: HepG2 cell line was incubated with increasing concentrations of sanggenon C at 1, 5, 10, 15 or 20 μM for 4 h. to induce cytotoxicity, and then further incubated with 100 μM palmitic acid to induce insulin resistance. HepG2 cells without sanggenon C and palmitic acid treatment servered as control group. Glucose uptake was determined by measuring 2-NBDG (2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)-amino]-D-glucose) fluorescence intensity using a microplate reader. Oil Red O staining was used to assess intracellular lipid accumulation, while oxidative stress was evaluated by enzyme-linked immunosorbent assay (ELISA).Results: Palmitic acid significantly decreased glucose uptake and increased intracellular lipid accumulation in HepG2 (p < 0.01), while sanggenon C enhanced t glucose uptake and lowered lipid accumulation in insulin-resistant HepG2 (p < 0.01). Sanggenon C significantly attenuated palmitic acidinduced increase in p-insulin receptor substrate 1 (p-IRS1), as well as decrease in p-AKT and p-FOXO1 (p < 0.01). Palmitic acid also induced oxidative stress in HepG2 through the up-regulation of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as the down-regulation of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). However, sanggenon C reduced ROS and MDA levels (p < 0.05), and enhanced SOD and GSH-Px in insulin-resistant HepG2 (p < 0.05). However, sanggenon C significantly increased p-AMP-activated protein kinase (p-AMPK) levels and p-ACC (acetyl-CoA carboxylase) in insulin-resistant HepG2 (p < 0.01).Conclusion: Sanggenon C lowers oxidative stress and ameliorates lipid accumulation thereby alleviating palmitic acid-induced insulin-resistant HepG2 cells via activation of AMPK pathway, thus suggesting that it is a potential strategy for overcoming insulin resistance. \",\"PeriodicalId\":23347,\"journal\":{\"name\":\"Tropical Journal of Pharmaceutical Research\",\"volume\":\"2014 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tropical Journal of Pharmaceutical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4314/tjpr.v22i7.1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Journal of Pharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4314/tjpr.v22i7.1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Sanggenon C alleviates palmitic acid-induced insulin resistance in HepG2 cells via AMPK pathway
Purpose: To investigate the potential role of sanggenon C alleviating in insulin resistance.Methods: HepG2 cell line was incubated with increasing concentrations of sanggenon C at 1, 5, 10, 15 or 20 μM for 4 h. to induce cytotoxicity, and then further incubated with 100 μM palmitic acid to induce insulin resistance. HepG2 cells without sanggenon C and palmitic acid treatment servered as control group. Glucose uptake was determined by measuring 2-NBDG (2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)-amino]-D-glucose) fluorescence intensity using a microplate reader. Oil Red O staining was used to assess intracellular lipid accumulation, while oxidative stress was evaluated by enzyme-linked immunosorbent assay (ELISA).Results: Palmitic acid significantly decreased glucose uptake and increased intracellular lipid accumulation in HepG2 (p < 0.01), while sanggenon C enhanced t glucose uptake and lowered lipid accumulation in insulin-resistant HepG2 (p < 0.01). Sanggenon C significantly attenuated palmitic acidinduced increase in p-insulin receptor substrate 1 (p-IRS1), as well as decrease in p-AKT and p-FOXO1 (p < 0.01). Palmitic acid also induced oxidative stress in HepG2 through the up-regulation of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as the down-regulation of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). However, sanggenon C reduced ROS and MDA levels (p < 0.05), and enhanced SOD and GSH-Px in insulin-resistant HepG2 (p < 0.05). However, sanggenon C significantly increased p-AMP-activated protein kinase (p-AMPK) levels and p-ACC (acetyl-CoA carboxylase) in insulin-resistant HepG2 (p < 0.01).Conclusion: Sanggenon C lowers oxidative stress and ameliorates lipid accumulation thereby alleviating palmitic acid-induced insulin-resistant HepG2 cells via activation of AMPK pathway, thus suggesting that it is a potential strategy for overcoming insulin resistance.
期刊介绍:
We seek to encourage pharmaceutical and allied research of tropical and international relevance and to foster multidisciplinary research and collaboration among scientists, the pharmaceutical industry and the healthcare professionals.
We publish articles in pharmaceutical sciences and related disciplines (including biotechnology, cell and molecular biology, drug utilization including adverse drug events, medical and other life sciences, and related engineering fields). Although primarily devoted to original research papers, we welcome reviews on current topics of special interest and relevance.