可穿戴传感器持续警惕空间和深度分辨灌注成像

B. Mapar, Yeung Lam, A. Mehrnia, B. Bates-Jensen, M. Sarrafzadeh, W. Kaiser
{"title":"可穿戴传感器持续警惕空间和深度分辨灌注成像","authors":"B. Mapar, Yeung Lam, A. Mehrnia, B. Bates-Jensen, M. Sarrafzadeh, W. Kaiser","doi":"10.1145/2448096.2448111","DOIUrl":null,"url":null,"abstract":"Direct characterization of blood perfusion in tissue is critical to a broad spectrum of applications in assessing circulatory disorders, wound conditions and ensuring outcomes of treatment. The rapid evolution of these conditions and their great risk for subjects require a continuously vigilant monitoring technology. This paper presents a wireless health platform providing the first wearable blood perfusion imager. This system, the Perfusion Oxygenation Monitor (POM), introduces sensing diversity by combining array methods and multispectral methods, as well as sensor and emitter distribution and operation scheduling. The principles of photoplethysmographic (PPG) sensing exploited by new methods will enable care providers to actively monitor blood perfusion at multiple anatomical sites for characterization and tracking of perfusion critical to tissue health, wound status and healing, formation of pressure ulcers, and circulation conditions. The POM system is described here along with its experimental validation. Experimental validation has been provided by a direct probing method based on physiological thermoregulatory response that induces perfusion change and is directly measured by POM. The demonstration of the POM system will also be supplemented by an analysis of the end to end system including sensor information processing, feature detection, Wireless Health data transport, and archive structure.","PeriodicalId":91386,"journal":{"name":"Proceedings Wireless Health ... [electronic resource]. Wireless Health (Conference)","volume":"56 1","pages":"15:1-15:2"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Wearable sensor for continuously vigilant spatial and depth-resolved perfusion imaging\",\"authors\":\"B. Mapar, Yeung Lam, A. Mehrnia, B. Bates-Jensen, M. Sarrafzadeh, W. Kaiser\",\"doi\":\"10.1145/2448096.2448111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Direct characterization of blood perfusion in tissue is critical to a broad spectrum of applications in assessing circulatory disorders, wound conditions and ensuring outcomes of treatment. The rapid evolution of these conditions and their great risk for subjects require a continuously vigilant monitoring technology. This paper presents a wireless health platform providing the first wearable blood perfusion imager. This system, the Perfusion Oxygenation Monitor (POM), introduces sensing diversity by combining array methods and multispectral methods, as well as sensor and emitter distribution and operation scheduling. The principles of photoplethysmographic (PPG) sensing exploited by new methods will enable care providers to actively monitor blood perfusion at multiple anatomical sites for characterization and tracking of perfusion critical to tissue health, wound status and healing, formation of pressure ulcers, and circulation conditions. The POM system is described here along with its experimental validation. Experimental validation has been provided by a direct probing method based on physiological thermoregulatory response that induces perfusion change and is directly measured by POM. The demonstration of the POM system will also be supplemented by an analysis of the end to end system including sensor information processing, feature detection, Wireless Health data transport, and archive structure.\",\"PeriodicalId\":91386,\"journal\":{\"name\":\"Proceedings Wireless Health ... [electronic resource]. Wireless Health (Conference)\",\"volume\":\"56 1\",\"pages\":\"15:1-15:2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Wireless Health ... [electronic resource]. Wireless Health (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2448096.2448111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Wireless Health ... [electronic resource]. Wireless Health (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2448096.2448111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

直接表征组织中的血液灌注对于评估循环系统疾病、伤口状况和确保治疗结果的广泛应用至关重要。这些疾病的快速演变及其对受试者的巨大风险需要持续警惕的监测技术。本文提出了一种提供首个可穿戴血液灌注成像仪的无线健康平台。灌注氧合监测仪(Perfusion Oxygenation Monitor, POM)系统采用阵列法和多光谱法相结合的传感分集,以及传感器和发射器的分布和运行调度。新方法利用的光容积脉搏波(PPG)传感原理将使护理提供者能够主动监测多个解剖部位的血液灌注,以表征和跟踪对组织健康、伤口状态和愈合、压疮形成和循环状况至关重要的灌注。本文描述了POM系统及其实验验证。基于生理热调节反应诱导灌注变化的直接探测方法,通过POM直接测量,提供了实验验证。POM系统的演示还将辅以端到端系统的分析,包括传感器信息处理、特征检测、无线健康数据传输和档案结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wearable sensor for continuously vigilant spatial and depth-resolved perfusion imaging
Direct characterization of blood perfusion in tissue is critical to a broad spectrum of applications in assessing circulatory disorders, wound conditions and ensuring outcomes of treatment. The rapid evolution of these conditions and their great risk for subjects require a continuously vigilant monitoring technology. This paper presents a wireless health platform providing the first wearable blood perfusion imager. This system, the Perfusion Oxygenation Monitor (POM), introduces sensing diversity by combining array methods and multispectral methods, as well as sensor and emitter distribution and operation scheduling. The principles of photoplethysmographic (PPG) sensing exploited by new methods will enable care providers to actively monitor blood perfusion at multiple anatomical sites for characterization and tracking of perfusion critical to tissue health, wound status and healing, formation of pressure ulcers, and circulation conditions. The POM system is described here along with its experimental validation. Experimental validation has been provided by a direct probing method based on physiological thermoregulatory response that induces perfusion change and is directly measured by POM. The demonstration of the POM system will also be supplemented by an analysis of the end to end system including sensor information processing, feature detection, Wireless Health data transport, and archive structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Zero-Effort Camera-Assisted Calibration Techniques for Wearable Motion Sensors. Accurate energy expenditure estimation using smartphone sensors Remote patient monitoring: what impact can data analytics have on cost? PEES: physiology-based end-to-end security for mHealth AsthmaGuru: a framework to improve adherence to asthma medication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1