系统保护方案的在线生成和解除

Andreas S. Pedersen, M. Blanke, J. Møller, H. Jóhannsson
{"title":"系统保护方案的在线生成和解除","authors":"Andreas S. Pedersen, M. Blanke, J. Møller, H. Jóhannsson","doi":"10.1109/PQ.2016.7724127","DOIUrl":null,"url":null,"abstract":"This paper presents a new method to automatically generate system protection schemes in real-time, where contingencies are filtered using a method providing N - 1 system snapshots. With future power systems consisting largely of renewable distributed generation with time-varying production, highly fluctuating conditions throughout the day will be the result. This makes off-line design of extensive defense plans for power systems infeasible, forming the motivation for the presented method. It relies on the real-time identification of which disturbances that threatens a power systems integrity. The method is based on a recently proposed method of calculating post-contingency Thevenin equivalents, which are used to assess the security of the post-contingency condition. The contingencies that violate the emergency limits are contained by pre-determining event-based remedial actions. The instability mechanisms threatening the system are individually treated, such that appropriate controls are allocated. The procedure is illustrated through a case study using the Nordic32 benchmark system.","PeriodicalId":6470,"journal":{"name":"2016 Electric Power Quality and Supply Reliability (PQ)","volume":"41 1","pages":"277-282"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On-line generation and arming of system protection schemes\",\"authors\":\"Andreas S. Pedersen, M. Blanke, J. Møller, H. Jóhannsson\",\"doi\":\"10.1109/PQ.2016.7724127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new method to automatically generate system protection schemes in real-time, where contingencies are filtered using a method providing N - 1 system snapshots. With future power systems consisting largely of renewable distributed generation with time-varying production, highly fluctuating conditions throughout the day will be the result. This makes off-line design of extensive defense plans for power systems infeasible, forming the motivation for the presented method. It relies on the real-time identification of which disturbances that threatens a power systems integrity. The method is based on a recently proposed method of calculating post-contingency Thevenin equivalents, which are used to assess the security of the post-contingency condition. The contingencies that violate the emergency limits are contained by pre-determining event-based remedial actions. The instability mechanisms threatening the system are individually treated, such that appropriate controls are allocated. The procedure is illustrated through a case study using the Nordic32 benchmark system.\",\"PeriodicalId\":6470,\"journal\":{\"name\":\"2016 Electric Power Quality and Supply Reliability (PQ)\",\"volume\":\"41 1\",\"pages\":\"277-282\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Electric Power Quality and Supply Reliability (PQ)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PQ.2016.7724127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Electric Power Quality and Supply Reliability (PQ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PQ.2016.7724127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种实时自动生成系统保护方案的新方法,该方法使用提供N - 1个系统快照的方法对突发事件进行过滤。未来的电力系统主要由时变生产的可再生分布式发电组成,其结果将是全天的高波动条件。这使得电力系统广泛防御方案的离线设计变得不可行,形成了本方法的动机。它依赖于实时识别哪些干扰威胁到电力系统的完整性。该方法是基于最近提出的计算事故后的Thevenin当量的方法,该方法用于评估事故后条件的安全性。通过预先确定基于事件的补救措施来控制违反紧急限制的突发事件。威胁系统的不稳定机制被单独处理,以便分配适当的控制。通过使用Nordic32基准测试系统的案例研究说明了该过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On-line generation and arming of system protection schemes
This paper presents a new method to automatically generate system protection schemes in real-time, where contingencies are filtered using a method providing N - 1 system snapshots. With future power systems consisting largely of renewable distributed generation with time-varying production, highly fluctuating conditions throughout the day will be the result. This makes off-line design of extensive defense plans for power systems infeasible, forming the motivation for the presented method. It relies on the real-time identification of which disturbances that threatens a power systems integrity. The method is based on a recently proposed method of calculating post-contingency Thevenin equivalents, which are used to assess the security of the post-contingency condition. The contingencies that violate the emergency limits are contained by pre-determining event-based remedial actions. The instability mechanisms threatening the system are individually treated, such that appropriate controls are allocated. The procedure is illustrated through a case study using the Nordic32 benchmark system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electrical resonance instability study in traction systems Analysis of power network loading due to fast charging of Electric Vehicles on highways Review of loss calculation reduction control methods of permanent magnet assisted reluctance drive Influence of choice of permanent magnet electromagnetic parameters in the research of electrical devices Measurement of power system phase differences by means of GPS timing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1