O. Babamiri, A. Vanaei, X. Guo, P. Wu, Amy Richter, K. T. W. Ng
{"title":"基于QUAL2KW的山地河流水质与自净数值模拟","authors":"O. Babamiri, A. Vanaei, X. Guo, P. Wu, Amy Richter, K. T. W. Ng","doi":"10.3808/jei.202000435","DOIUrl":null,"url":null,"abstract":"Understanding the water quality in mountainous rivers is critical for sustainable water resources management. By using the rivers’ self-purification to improve water quality is also the most economical and sustainable way to clean water. In the present study, the QUAL2KW model is applied to investigate the water quality and self -purification capacity in a mountainous river. The Abbasabad River in Iran is used as the study site. The river is divided into two interva ls based on the main purpose of water usage: drinking and agriculture. The model is calibrated and validated using field data from five monitoring stations along the river. Six parame ters, COD, BOD, DO, P-PO4, N-NO3, and N-NH4 are calculated and compared with field data. The Margin of Safety (MOS) is presented and added to the value of each parameter for better water resources protection. The sensitivity analysis is conducted to identify the m ost influential parameters in water quality simulation for mountainous rivers. It is revealed that the parameters of oxidation rate, nitrification rate, and denitrification rate have the maximum influence on water quality simulation for mountainous rivers using QUAL2KW. Additionally, three scenarios are tested for water quality and self-purification. It is found that the river flow rate has a stronger impact for water self - purification in mountainous rivers and the location of point-source pollution has very limited impact.","PeriodicalId":54840,"journal":{"name":"Journal of Environmental Informatics","volume":"74 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2020-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Numerical Simulation of Water Quality and Self-Purification in a Mountainous River Using QUAL2KW\",\"authors\":\"O. Babamiri, A. Vanaei, X. Guo, P. Wu, Amy Richter, K. T. W. Ng\",\"doi\":\"10.3808/jei.202000435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the water quality in mountainous rivers is critical for sustainable water resources management. By using the rivers’ self-purification to improve water quality is also the most economical and sustainable way to clean water. In the present study, the QUAL2KW model is applied to investigate the water quality and self -purification capacity in a mountainous river. The Abbasabad River in Iran is used as the study site. The river is divided into two interva ls based on the main purpose of water usage: drinking and agriculture. The model is calibrated and validated using field data from five monitoring stations along the river. Six parame ters, COD, BOD, DO, P-PO4, N-NO3, and N-NH4 are calculated and compared with field data. The Margin of Safety (MOS) is presented and added to the value of each parameter for better water resources protection. The sensitivity analysis is conducted to identify the m ost influential parameters in water quality simulation for mountainous rivers. It is revealed that the parameters of oxidation rate, nitrification rate, and denitrification rate have the maximum influence on water quality simulation for mountainous rivers using QUAL2KW. Additionally, three scenarios are tested for water quality and self-purification. It is found that the river flow rate has a stronger impact for water self - purification in mountainous rivers and the location of point-source pollution has very limited impact.\",\"PeriodicalId\":54840,\"journal\":{\"name\":\"Journal of Environmental Informatics\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2020-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Informatics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3808/jei.202000435\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Informatics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3808/jei.202000435","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Numerical Simulation of Water Quality and Self-Purification in a Mountainous River Using QUAL2KW
Understanding the water quality in mountainous rivers is critical for sustainable water resources management. By using the rivers’ self-purification to improve water quality is also the most economical and sustainable way to clean water. In the present study, the QUAL2KW model is applied to investigate the water quality and self -purification capacity in a mountainous river. The Abbasabad River in Iran is used as the study site. The river is divided into two interva ls based on the main purpose of water usage: drinking and agriculture. The model is calibrated and validated using field data from five monitoring stations along the river. Six parame ters, COD, BOD, DO, P-PO4, N-NO3, and N-NH4 are calculated and compared with field data. The Margin of Safety (MOS) is presented and added to the value of each parameter for better water resources protection. The sensitivity analysis is conducted to identify the m ost influential parameters in water quality simulation for mountainous rivers. It is revealed that the parameters of oxidation rate, nitrification rate, and denitrification rate have the maximum influence on water quality simulation for mountainous rivers using QUAL2KW. Additionally, three scenarios are tested for water quality and self-purification. It is found that the river flow rate has a stronger impact for water self - purification in mountainous rivers and the location of point-source pollution has very limited impact.
期刊介绍:
Journal of Environmental Informatics (JEI) is an international, peer-reviewed, and interdisciplinary publication designed to foster research innovation and discovery on basic science and information technology for addressing various environmental problems. The journal aims to motivate and enhance the integration of science and technology to help develop sustainable solutions that are consensus-oriented, risk-informed, scientifically-based and cost-effective. JEI serves researchers, educators and practitioners who are interested in theoretical and/or applied aspects of environmental science, regardless of disciplinary boundaries. The topics addressed by the journal include:
- Planning of energy, environmental and ecological management systems
- Simulation, optimization and Environmental decision support
- Environmental geomatics - GIS, RS and other spatial information technologies
- Informatics for environmental chemistry and biochemistry
- Environmental applications of functional materials
- Environmental phenomena at atomic, molecular and macromolecular scales
- Modeling of chemical, biological and environmental processes
- Modeling of biotechnological systems for enhanced pollution mitigation
- Computer graphics and visualization for environmental decision support
- Artificial intelligence and expert systems for environmental applications
- Environmental statistics and risk analysis
- Climate modeling, downscaling, impact assessment, and adaptation planning
- Other areas of environmental systems science and information technology.