{"title":"对擦除具有最大鲁棒性的真实、紧密的帧","authors":"Markus Püschel, J. Kovacevic","doi":"10.1109/DCC.2005.77","DOIUrl":null,"url":null,"abstract":"Motivated by the use of frames for robust transmission over the Internet, we present a first systematic construction of real tight frames with maximum robustness to erasures. We approach the problem in steps: we first construct maximally robust frames by using polynomial transforms. We then add tightness as an additional property with the help of orthogonal polynomials. Finally, we impose the last requirement of equal norm and construct, to our best knowledge, the first real, tight, equal-norm frames maximally robust to erasures.","PeriodicalId":91161,"journal":{"name":"Proceedings. Data Compression Conference","volume":"67 1","pages":"63-72"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"90","resultStr":"{\"title\":\"Real, tight frames with maximal robustness to erasures\",\"authors\":\"Markus Püschel, J. Kovacevic\",\"doi\":\"10.1109/DCC.2005.77\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the use of frames for robust transmission over the Internet, we present a first systematic construction of real tight frames with maximum robustness to erasures. We approach the problem in steps: we first construct maximally robust frames by using polynomial transforms. We then add tightness as an additional property with the help of orthogonal polynomials. Finally, we impose the last requirement of equal norm and construct, to our best knowledge, the first real, tight, equal-norm frames maximally robust to erasures.\",\"PeriodicalId\":91161,\"journal\":{\"name\":\"Proceedings. Data Compression Conference\",\"volume\":\"67 1\",\"pages\":\"63-72\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"90\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2005.77\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2005.77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real, tight frames with maximal robustness to erasures
Motivated by the use of frames for robust transmission over the Internet, we present a first systematic construction of real tight frames with maximum robustness to erasures. We approach the problem in steps: we first construct maximally robust frames by using polynomial transforms. We then add tightness as an additional property with the help of orthogonal polynomials. Finally, we impose the last requirement of equal norm and construct, to our best knowledge, the first real, tight, equal-norm frames maximally robust to erasures.